首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
A series of methyl methacrylate‐butadiene‐styrene (MBS) core–shell impact modifiers were prepared by grafting styrene (St) and methyl methacrylate (MMA) onto polybutadiene (PB) or styrene‐butadiene rubber (SBR) seed latex in emulsion polymerization. All the MBS modifiers were designed to have the same total chemical composition, and Bd/St/MMA equaled 39/31/30, which was a prerequisite for producing transparent blends with poly(MMA)/styrene‐acrylonitrile (PMMA/SAN) matrix copolymers. Under this composition, different ways of arrangement for styrene in MBS led to the different structure of MBS modifier. The concentration of PB or SBR rubber of MBS in PMMA/SAN/MBS blends was kept at a constant value of 15 wt.%. The effects of arrangement of St in MBS on the mechanical and optical properties of PMMA/SAN/MBS blends were investigated. The results indicated that Izod impact strength of PMMMA/SAN/MBS blend with the amount of St grafted on core in MBS was higher than that of blend with the amount of St copolymerized with Bd in core of MBS, while the transparency of blend is opposite. From transmission electron microscopy, it was found that the arrangement of St in MBS influenced the dispersion of blend, which led to different toughness. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
ABS/PVC blends were prepared over a range of compositions by mixing PVC, SAN, and PB‐g‐SAN. All samples were designed to have a constant rubber level of 12 wt % and the ratio of total‐SAN to PVC in the matrix of the blends varied from 70.5/17.5 to 18/80. Transmission electron microscope and scanning electron microscope have been used to study deformation mechanisms in the ABS/PVC blends. Several different types of microscopic deformation mechanisms, depending on the composition of blends, were observed for the ABS/PVC blends. When the blend is a SAN‐rich system, the main deformation mechanisms were crazing of the matrix. When the blend is a PVC‐rich system, crazing could no longer be detected, while shear yielding of the matrix and cavitation of the rubber particles were the main mechanisms of deformation. When the composition of blend is in the intermediate state, both crazing and shear yielding of matrix were observed. This suggests that there is a transition of deformation mechanism in ABS/PVC blends with the change in composition, which is from crazing to shear deformation. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 687–695, 2006  相似文献   

3.
采用异山梨醇型聚碳酸酯(DB),与掺混型ABS熔融共混制备了具有不同聚丁二烯(PB)含量和丙烯腈(AN)含量的DB/掺混型ABS合金,并在考察掺混型ABS特征对合金结构与性能的影响的基础上,分别使用同种掺混型ABS以及各种商品化ABS树脂,比较了DB/ABS合金和双酚A型聚碳酸酯/ABS合金的性能及其变化规律.结果表明,对DB/掺混型ABS(70/30)合金而言,PB含量变化对于合金拉伸性能的影响明显大于AN含量变化所带来的影响,在PB含量为6.3 wt%条件下,各不同AN含量的合金体系均有最好的性能表现.PB含量和AN含量变化对合金分散相形态的影响与力学拉伸性能变化特征一致.DB/ABS合金体系均具有良好的热稳定性与热力学相容性,受AN含量和PB含量变化的影响较小,合金玻璃化转变温度与DB非常接近.以双酚A型聚碳酸酯为基础的聚碳酸酯(PC)/ABS合金及以异山梨醇型聚碳酸酯为基础的DB/ABS合金,在拉伸性能变化上均表现出完全相同的规律,且无论是采用掺混型ABS还是采用商品化ABS的体系,PC/ABS与DB/ABS合金在拉伸性能所反映出的规律也是基本一致的.  相似文献   

4.
In this first of two papers, the thermal decomposition of bisphenol A bis(diphenyl phosphate)-flame retarded polycarbonate (PC) blends with different impact modifiers was studied. The impact modifiers were an acrylonitrile-butadiene-styrene (ABS), a poly(n-butyl acrylate) (PBA) rubber with a poly(methyl methacrylate) (PMMA) shell and two silicone-acrylate rubbers consisting of PBA with different amounts of polydimethylsiloxane (PDMS) and different shells (PMMA and styrene-acrylonitrile, SAN). The focus of this work was to study the impact of the acrylate and silicon-acrylate rubbers with respect to pyrolysis and flame retardancy in comparison to common ABS. Thermogravimetry (TG) was performed to investigate the pyrolysis behaviour and reaction kinetics. TG in combination with FTIR identified the pyrolysis gases. Solid residues were investigated by FTIR-ATR. PC/ABS shows two-step decomposition, with PC decomposing independently from ABS at higher temperatures. Pure acrylate rubber destabilises PC due to interactions between the rubber and PC, which leads to earlier decomposition of PC. Using silicone-acrylate rubbers led to similar results as PC/ABS with respect to pyrolysis, reaction kinetics and analysis of the solid residue; hence the exchange of ABS for the silicone-acrylate rubbers is possible.  相似文献   

5.
In this second of a series of two papers, the fire behaviour of halogen-free flame retarded polycarbonate (PC) blends with different impact modifiers was studied. The impact modifiers were acrylonitrile-butadiene-styrene (ABS), a poly(n-butyl acrylate) rubber (PBA) with a poly(methyl methacrylate) (PMMA) shell and two silicone-acrylate rubbers consisting of PBA with different amounts of polydimethylsiloxane (PDMS) and different shell materials (PMMA and styrene-acrylonitrile, SAN). The flame retardant was bisphenol A bis(diphenyl phosphate) (BDP). Flammability was determined by LOI and UL 94. The burning behaviour under forced flaming conditions was studied by cone calorimeter under different external irradiations and by pyrolysis combustion flow calorimeter measurements. The exchange of ABS with the pure acrylate rubber worsened flammability, while similar results were obtained in cone calorimeter measurements. The exchange of ABS with the silicone-acrylate rubbers is promising, particularly with higher amounts of PDMS. In flammability tests strongly enhanced LOI values were obtained and therefore silicone-acrylate rubbers look like promising alternatives for ABS.  相似文献   

6.
Three series of MBS core-shell impact modifiers were prepared by grafting styrene and methyl methacrylate onto PB or SBR seed latex in emulsion polymerization. All the MBS modifiers were designed to have the same total chemical composition, and MMA/Bd/St equals 30/42/28, which is a prerequisite for producing transparent blends with PVC. Under this composition, there were three different ways of arrangement for styrene in MBS, which led to the different structure of MBS modifier. The concentration of MBS in PVC/MBS blends was kept at a constant value of 20 wt.%. The effects of arrangement of St in MBS on the mechanical and optical properties of PVC/MBS blends were studied. The notched Izod impact test results showed that the MBS with a PB homopolymer core grafted with St had a lowest brittle-ductile transition (BDT) temperature and BDT temperature increased with the amount of St copolymerized with Bd in the core of MBS. The transparency of blends also increased with the amount of St copolymerized with Bd in the core. TEM results showed that the arrangement of St in MBS influenced the deformation behavior. Two deformation modes were observed in the blends: cavitation and shear yielding. When all St was grafted onto the PB rubber, both cavitation and debonding were observed, which relieve the triaxial tension and promote the shear yielding of the PVC matrix. When all St was copolymerized with Bd in MBS, no cavitation could be observed and only the shear yielding of the PVC matrix took place.  相似文献   

7.
Blends of ABS (acrylonitrile–butadiene–styrene) with phenoxy(poly(hydroxyether bisphenol A)) were prepared using a Branender single screw extruder. Scanning and transmission electron micrographs (SEM, TEM) showed a typical two-phase morphology; particle-in-matrix (90/10) (ABS/phenoxy by weight), 70/30, 10/90), island/sea (30/70) and co-continuous (50/50) morphologies. The glass transition temperature (Tg) of SAN was almost unchanged in the blends, while the Tg of phenoxy increased by about 5 °C in the blends. The synergistic effect of tensile modulus and strength was noted in ABS-rich blends, where a drastic drop of ductility was seen, and the results were interpreted in terms of rubber particle migration form SAN to phenoxy phase, which was visualized by TEM. Melt viscosity showed yield in ABS-rich blends, and generally followed the log additivity.  相似文献   

8.
ABS-g-MAH (maleic anhydride) with different grafting degree, ABS/OMT (organo montmorillonite) and ABS-g-MAH/OMT nanocomposites were prepared via melt blending. The grafting reaction, phase morphology, clay dispersion, thermal properties, dynamic mechanical properties and flammability properties were investigated. FTIR spectra results indicate that maleic anhydride was successfully grafted onto butadiene chains of the ABS backbone in the molten state using dicumyl peroxide as the initiator and styrene as the comonomer and the relative grafting degree increased with increasing loading of MAH. TEM images show the size of the dispersed rubber domains of ABS-g-MAH increased and the dispersion is more uniform than that of neat ABS resin. XRD and TEM results show that intercalated/exfoliated structure formed in ABS-g-MAH/OMT nanocomposites and the rubber phase intercalated into clay layers distributed in both SAN phase and rubber phase. TGA results reveal the intercalated/exfoliated structure of ABS-g-MAH/OMT nanocomposites has better barrier properties and thermal stability than intercalated ones of ABS/OMT nanocomposites. The Tg of ABS-g-MAH/OMT nanocomposites was also higher than that of neat ABS/OMT nanocomposites. The results of cone measurements show that ABS-g-MAH/OMT nanocomposites exhibit significantly reduced flammability when compared to ABS/OMT nanocomposites even at the same clay content. The chars of ABS-g-MAH/OMT nanocomposites were tighter, denser, more integrated and fewer surface microcracks than ABS/OMT residues.  相似文献   

9.
Crystallization of a semi-crystalline polyolefin in the presence of low molecular weight modifiers was quantified by differential scanning calorimetry and optical microscopy. The polyolefin was a commercial grade of isotactic poly(1-butene) (iPB). Two modifiers were used: an oligomeric plasticizer, designated HOAO, which decreased the glass transition temperature (Tg) of the system, and an oligomeric tackifier, designated HOCP, which increased Tg. Binary iPB/modifier blends containing 10% or 20% by weight of HOAO or HOCP were examined to determine how their addition affects Tg, while ternary iPB/HOAO/HOCP blends containing 10% or 20% by weight of total modifier were examined to determine the effects of dilution by using a ratio of HOAO to HOCP that matched the Tg of iPB. The addition of modifier decreased the nucleation rate, spherulitic crystal growth rate, and final crystallinity of each blend. However, only the nucleation rate showed a dependence on the type of modifier, with nucleation retarded more by HOCP than by HOAO. A Hoffman-Weeks analysis of the melting point as a function of crystallization temperature confirmed that the driving force for nucleation was reduced, and that the effect was larger for HOCP. An Avrami analysis of the bulk crystallization kinetics was consistent with these observations, as the Avrami exponents were in the range of 3-4.  相似文献   

10.
Core-shell structured polyacrylic(named CSSP) impact modifiers consisting of a rubbery poly(n-butyl acrylate) core and a rigid poly(methyl methacrylate) shell with a size of about 353 nm were prepared by seed emulsion polymerization. The CSSP modifiers with different core-shell weight ratios(90/10, 85/15, 80/20, 75/25, 70/30, 65/35 and 60/40) were used to modify the toughness of poly(butylene terephthalate)(PBT) by melt blending. It was found that the polymerization had a very high instantaneous conversion(> 95.7%) and overall conversion(99.7%). The morphology of the core-shell structure was confirmed by means of transmission electron microscopy. Scanning electron microscopy was used to observe the morphology of the fractured surfaces. Differential scanning calorimeter was used to study the crystallization behaviors of PBT/CSSP blends. The dynamic mechanical analyses of PBT/CSSP blends showed two merged transition peaks of PBT matrix, with the presence of CSSP core-shell structured modifier, that were responsible for the improvement of PBT toughness. The results indicated that the notch impact strength of PBT/CSSP blends with a core-shell weight ratio of 75/25 was almost 8.64 times greater than that of pure PBT, and the mechanical properties agreed well with the SEM observation.  相似文献   

11.
SAN共聚物组成对PVC/ABS共混物相容性的影响   总被引:5,自引:0,他引:5  
采用乳液聚合技术通过改变共聚单体的投料比(St/AN)合成了一系列不同AN结合量的ABS接枝共聚物粉料和SAN共聚物.将其与聚氯乙烯(PVC)和邻苯二甲酸二辛酯(DOP)熔融共混分别制得了PVC/ABS、PVC/SAN、PVC/ABS/DOP和PVC/SAN/DOP共混物,利用SEM、TEM和动态力学粘弹谱仪(DMA)对共混物的相容性和相结构进行了表征.结果发现,在PVC/ABS共混体系中,尽管改变接枝SAN共聚物的AN结合量,PVC和SAN共聚物均为不相容体系;在该共混物中引入增塑剂DOP后,虽然当SAN共聚物AN结合量小于23.4 wt%时,共混物在室温以上只存在一个tanδ峰,但形态结构研究结果表明共混物仍为不相容体系,共混物的相区尺寸明显地依赖于SAN共聚物中的AN结合量,当AN结合量为23.4 wt%时相区尺寸最小.  相似文献   

12.
A series of ABS plastics prepared by bulk polymerization was studied. The test samples contained almost equal amounts of PB but mostly differed in the molecular mass of a styrene-acrylonitrile copolymer. It was shown that the molecular mass of the copolymer strongly affects the rheological and mechanical properties of ABS plastics. An increase in molecular mass leads to a rise not only in the non-Newtonian viscosity of plastics but also in their yield point, storage modulus under periodic steady-state shear flow in the low-frequency plateau region, and impact strength. Quantitative correlations between these rheological and mechanical characteristics of the copolymers and their M w values were established. As opposed to homophase polymer systems, a marked increase in the shear stress has no effect on viscosity in relation to the molecular mass of ABS plastics. In the case of melts, the influence of the M w of the styrene-acrylonitrile copolymer on the rheological behavior of ABS plastics is apparently related to a change in the interaction of PB particles with the copolymer that controls the structural framework of the system. The relationship between the impact strength of the copolymer and its M W may be explained by the fact that the latter parameter influences orientational effects in crazes that arise during steady-state shear flow of ABS plastics in the solid state.  相似文献   

13.
Cellulose diacetate (CDA) plasticized with triacetine was blended by melting extrusion with two different kind of elastomeric core–shell impact modifiers: methyl methacrylate (MMA, shell) grafted onto styrene–butadiene–rubber (SBR, core) (MSBR) and MMA (shell) grafted onto butyl acrylate rubber (BAR, core) (MBAR). The different CDA/MSBR and CDA/MBAR blends were characterized by mechanical properties and morphological observation with various impact modifier contents. The highest impact strength was observed in the case of the blend with 5 wt% of MSBR and 3 wt% of MBAR, respectively. The tensile strength and Young’s modulus of CDA blends were decreased with increasing both MSBR and MBAR. According to SEM observation, MBAR was dispersed more effectively in CDA matrix than that of MSBR, thus indicating improved impact strength.  相似文献   

14.
We recently presented electron spin resonance spectra of poly(acrylonitrile–butadiene–styrene) (ABS) doped with 10‐doxylnonadecane (10DND) and 5‐doxyldecane (5DD) as spin probes. The spectra were measured in three types of ABS that differed in their butadiene contents and methods of preparation. Results for the ABS polymers were evaluated by comparison with similar studies on the homopolymers polybutadiene (PB) and polystyrene (PS) and the copolymers poly(styrene‐co‐acrylonitrile) (SAN) and poly(styrene‐co‐butadiene) (SB). Only one spectral component was detected for 10DND in PB, PS, SAN, and SB. In contrast, two spectral components differing in their dynamic properties were detected in the ABS samples and were assigned to spin probes located in butadiene‐rich domains (the fast component) and SAN‐rich domains (the slow component). The presence of two spectral components was taken as an indication of microphase separation. In this study, we present details on the dynamics and microphase separation by simulating spectra of 10DND in ABS, PB, PS, and SAN. The simulations are based on a dynamic model defined by the components of the rotational diffusion tensor and the diffusion tilt angle between the symmetry axis of the rotational diffusion tensor and the direction of the nitrogen 2pz atomic orbital. The jump diffusion model led to good agreement with experimental spectra. In this model, the spin probe has a fixed orientation for a given time and then jumps instantaneously to a new orientation. The temperature variation of the rotational correlation time in PB and PS consisted of two dynamic regimes, with different activation energies. The transition temperature at which the change in dynamics occurs (Ttr) is 380 K for PS and 205 K for PB, essentially the same as the corresponding glass‐transition temperatures measured by differential scanning calorimetry. We suggest that Ttr is a better indicator of the glass transition than the temperature at which the total spectral width is 50 G, especially for large probes. The simulation program allowed the determination of the relative intensities of the fast and slow spectral components as a function of temperature; this information was used to clarify the redistribution of the probe above the glass transition of the SAN‐rich component in ABS systems. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 424–433, 2002; DOI 10.1002/polb.10110  相似文献   

15.
Two ionomers, ethylene-methacrylic acid copolymer ionized with sodium cation (EMA-Na) and zinc cation (EMA-Zn), were employed as impact modifiers to prepare blends with polyoxymethylene (POM) via a melt extrusion. A copolymer of methyl methacrylate-styrene-butadiene (MBS) used as a co-impact modifier was also incorporated into the blends. The mechanical properties, thermal properties, morphology, and rheology were studied. A moderate toughening was observed for POM/ionomer binary blends, which was attributable to the rubbery natural and good adhesion of the ionomers. EMA-Zn exhibited a much better toughening effect than EMA-Na because of its higher elasticity and stronger interaction with POM. The incorporation of the ionomers into POM/MBS blends resulted in an improvement of mechanical properties, which was attributable to the compatibilizing effect of ionomer on POM/MBS blending system. The observation of scanning electron microscopy demonstrated that the finer phase domains were caused by incorporation of ionomers, which, acting as a compatibilizer as well as an impact modifier, reduced the interfacial tension and improved the interfacial adhesion between the phases. Differential scanning calorimetry investigation indicated that the presence of ionomer in the blends disturbed the crystallization of POM and resulted in a decrease in the crystallinity of POM. The evaluation of melt flow index revealed an increase in viscosity of the blends by incorporation of the ionomers, which was caused the ionic interaction between POM and the ionomers.  相似文献   

16.
《先进技术聚合物》2018,29(6):1603-1612
In this study, polystyrene (PS) was melt blended with different amounts of poly1‐hexene (PH) and poly(1‐hexene‐co‐hexadiene) (COPOLY) and the blends were compared with conventional PS/polybutadiene (PS/PB) one. Scanning electron microscope revealed that the dispersion of PH and COPOLY in PS matrix was more uniform with the appearance of small particles in PS matrix; however, in the case of PS/PB blends, the fracture surface showed nonhomogenous morphology with the appearance of bigger rubber particles. Based on Differential Scanning Calorimetry (DSC) and dynamic mechanical thermal analysis results, Tg of the blends decreased in comparison with it in neat PS. Impact strength of PS/PH and PS/COPOLY blends was considerably higher than that in PS/PB and significantly higher than the value for neat PS. Tensile test showed substantial improvement in stress at yield and better elongation at break for COPOLY containing blend than the samples containing PH and PB rubbers. Also, blending of PS with 10% of the rubbers was considered in the presence of dicumylperoxide as a probable grafting/cross‐linking agent to produce XPS/COPOLY10 and XPS/PB10 samples, respectively. IR results of the nonsoluble solvent extracted gel showed that COPOLY and PB were grafted to PS matrix during melt blending, which caused higher impact strength in the related samples.  相似文献   

17.
Microphase separation in poly(acrylonitrile–butadiene–styrene) (ABS) was studied as a function of the butadiene content and method of preparation with electron spin resonance (ESR) spectra of nitroxide spin probes. Results for the ABS polymers were evaluated by comparison with similar studies of the homopolymers polybutadiene (PB), polystyrene (PS), and polyacrylonitrile (PAN) and the copolymers poly(styrene‐co‐acrylonitrile) (SAN) and poly(styrene‐co‐butadiene) (SB). Two spin probes were selected for this study: 10‐doxylnonadecane (10DND) and 5‐doxyldecane (5DD). The probes varied in size and were selected because their hydrocarbon backbone made them compatible with the polymers studied. The ESR spectra were measured in the temperature range 120–420 K and were analyzed in terms of line shapes, line widths, and hyperfine splitting from the 14N nucleus; the appearance of more than one spectral component was taken as an indication of microphase separation. Only one spectral component was detected for 10DND in PB, PS, and PAN and in the copolymers SAN and SB. In contrast, two spectral components differing in their dynamic properties were detected for both probes in the three types of ABS samples studied and were assigned to spin probes located in butadiene‐rich domains (the fast component) and SAN‐rich domains (the slow component). The behavior of the fast component in ABS prepared by mass polymerization suggested that the low‐Tg (glass‐transition‐temperature) phase was almost pure PB. The corresponding phase in ABS prepared by emulsion grafting also contained styrene and acrylonitrile monomers. A redistribution of the spin probes on heating occurred with heating near the Tg of the SAN phase, suggesting that the ABS polymers as prepared were not in thermodynamic equilibrium. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 415–423, 2002; DOI 10.1002/polb.10109  相似文献   

18.
Poly(trimethylene terephthalate)/acrylonitrile-butadiene-styrene (PTT/ABS) blends were prepared by melt processing with and without epoxy or styrene-butadiene-maleic anhydride copolymer (SBM) as a reactive compatibilizer. The miscibility and compatibilization of the PTT/ABS blends were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), capillary rheometer and scanning electron microscopy (SEM). The existence of two separate composition-dependent glass transition temperatures (Tgs) indicates that PTT is partially miscible with ABS over the entire composition range. In the presence of the compatibilizer, both the cold crystallization and glass transition temperatures of the PTT phase shifted to higher temperatures, indicating their compatibilization effects on the blends.The PTT/ABS blends exhibited typical pseudoplastic flow behavior. The rheological behavior of the epoxy compatibilized PTT/ABS blends showed an epoxy content-dependence. In contrast, when the SBM content was increased from 1 wt% to 5 wt%, the shear viscosities of the PTT/ABS blends increased and exhibited much clearer shear thinning behavior at higher shear rates. The SEM micrographs of the epoxy or SBM compatibilized PTT/ABS blends showed a finer morphology and better adhesion between the phases.  相似文献   

19.
The poly(hydroxy ether of bisphenol A)‐based blends containing poly(acrylontrile‐co‐styrene) (SAN) were prepared through in situ polymerization, i.e., the melt polymerization between the diglycidy ether of bisphenol A (DGEBA) and bisphenol A in the presence of poly(acrylontrile‐co‐styrene) (SAN). The polymerization reaction started from the initial homogeneous ternary mixture of SAN/DGEBA/bisphenol A, and the phenoxy/SAN blends with SAN content up to 20 wt % were obtained. Both the solubility behavior and Fourier transform infrared (FTIR) spectroscopy studies demonstrate that no intercomponent reaction occurred in the reactive blend system. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electronic microscopy (SEM) were employed to characterize the phase structure of the as‐polymerized blends. All the blends display the separate glass transition temperatures (Tg's); i.e., the blends were phase‐separated. The morphological observation showed that all the blends exhibited well‐distributed phase‐separated morphology. For the blends with SAN content less than 15 wt %, very fine SAN spherical particles (1–3 μmm in diameter) were uniformly dispersed in a continuous matrix of phenoxy and the fine morphology was formed through phase separation induced by polymerization. Mechanical tests show that the blends containing 5–15 wt % SAN displayed a substantial improvement of tensile properties and Izod impact strength, which were in marked contrast to those of the materials prepared via conventional methods. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 525–532, 1999  相似文献   

20.
We have determined the activation energies (Ea) of yellowing and gloss loss for a large number of engineering thermoplastics and blends under accelerated weathering conditions. The Ea often depend on the property measured and exposure conditions, although they vary over a fairly small range. Under the CIRA/sodalime-filtered xenon arc conditions most likely to be representative of outdoor exposure, the Ea for gloss loss was ≤5 kcal/mol for all samples tested. The Ea for yellowing was also ≤5 kcal/mol except for SAN and ABS. Evidently the color bodies formed from photo-oxidation of SAN are more sensitive to temperature. A reaction with an Ea of 5 kcal/mol will increase its rate by about 33% for each 10 °C increase in temperature near room temperature. Temperature is an important, but not overwhelming, variable in the weathering of most engineering thermoplastics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号