首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Synchronization of nonlinear dynamical systems with complex variables has attracted much more attention in various fields of science and engineering. In this paper, the problem of parameter identification and adaptive impulsive synchronization for a class of chaotic (hyperchaotic) complex nonlinear systems with uncertain parameters is investigated. Based on the theories of adaptive control and impulsive control, a synchronization scheme is designed to make a class of chaotic and hyperchaotic complex systems asymptotically synchronized, and uncertain parameters are identified simultaneously in the process of synchronization. Particularly, the proposed adaptive–impulsive control laws for synchronization are simple and can be readily applied in practical applications. The synchronization of two identical chaotic complex Chen systems and two identical hyperchaotic complex Lü systems are taken as two examples to verify the feasibility and effectiveness of the proposed controllers and identifiers.  相似文献   

2.
The complex nonlinear systems appear in many important fields of physics and engineering, which are very useful for cryptography and secure communication. This paper investigates adaptive generalized function projective synchronization (AGFPS) between two different dimensional chaotic complex systems with fully or partially unknown parameters via both reduced order and increased order. Based on the Lyapunov stability theorem and adaptive control technique, a general adaptive controller with corresponding parameter update rule is constructed to achieve AGFPS between two nonidentical chaotic complex systems with distinct orders, and identify the unknown parameters simultaneously. This scheme is then applied to obtain AGFPS between the hyperchaotic complex Lü system and the chaotic complex Lorenz system with fully unknown parameters, and between the uncertain chaotic complex Chen system and the uncertain hyperchaotic complex Lorenz system, respectively. Corresponding simulations results are performed to show the feasibility and effectiveness of the proposed synchronization method.  相似文献   

3.
In this paper, we apply the nonsingular terminal sliding mode control technique to realize the novel combination-combination synchronization between combination of two chaotic systems as drive system and combination of two chaotic systems as response system with unknown parameters in a finite time. On the basic of the adaptive laws and finite-time stability theory, an adaptive combination sliding mode controller is proposed to ensure the occurrence of the sliding motion in a given finite time for four different chaotic systems. In theory, it is proved that the sliding mode technique can realize fast convergence for four different chaotic systems in the finite time. Some criteria and corollaries are derived for finite-time combination-combination synchronization of four different chaotic systems. Numerical simulation results are shown to verify the effectiveness and correctness of the combination-combination synchronization.  相似文献   

4.
Time delays are ubiquitous in real world and are often sources of complex behaviors of dynamical systems. This paper addresses the problem of parameter identification and synchronization of uncertain hyperchaotic time-delayed systems. Based on the Lyapunov stability theory and the adaptive control theory, a single adaptive controller with one variable for synchronizing two identical time-delay hyperchaotic Lorenz systems with mismatch parameters is proposed. The parameter update laws and sufficient conditions of the scheme are obtained for both linear feedback and adaptive control approaches. Numerical simulations are also given to show the effectiveness of the proposed method.  相似文献   

5.
In this paper, the problem of finite-time chaos synchronization between two different uncertain chaotic systems with unknown parameters and input nonlinearities is investigated. It is assumed that both master and slave systems are perturbed by unknown model uncertainties, external disturbances, and fully unknown parameters. Proper update laws are proposed to estimate the systems?? unknown parameters. Based on the update laws and finite-time control technique, a robust adaptive controller is introduced to guarantee the convergence of the slave system trajectories to the trajectories of the master system in a given finite time. Two illustrative examples are presented to illustrate the effectiveness and applicability of the proposed finite-time controller and to validate the theoretical results of the paper.  相似文献   

6.
This paper studies the robust adaptive full state hybrid projective synchronization (FSHPS) scheme for a class of chaotic complex systems with uncertain parameters and external disturbances. By introducing a compensator and using nonlinear control and adaptive control, the robust adaptive FSHPS scheme is derived, which can eliminate the influence of uncertainties effectively and achieve adaptive FSHPS of the chaotic (hyperchaotic) complex systems asymptotically with a small error bound. The adaptive laws of the unknown parameters are given, and the sufficient conditions of realizing FSHPS are derived as well. Moreover, we also discuss the case that parameters of chaotic complex system are complex. Finally, the complex Chen system and Lü system, and the hyperchaotic complex Lorenz system are taken as two examples and the numerical simulations are provided to verify the effectiveness and robustness of the proposed control scheme.  相似文献   

7.
The problem of real combination synchronization between three complex-variable chaotic systems with unknown parameters is investigated by nonsingular terminal sliding mode control in a finite time. Based on the adaptive laws and finite-time stability theory, a nonsingular terminal sliding mode control is designed to ensure the real combination synchronization of three complex-variable chaotic systems in a given finite time. It is theoretically gained that the introduced sliding mode technique has finite-time convergence and stability in both arriving and sliding mode phases. Numerical simulation results are given to show the effectiveness and reliability of the finite-time real combination synchronization.  相似文献   

8.
The adaptive synchronized problem of the four-dimensional (4D) Lü hyperchaotic system performed by Elabbasy et al. (Chaos Solitons Fractals 30:1133–1142, 2006) with uncertain parameters by applying the single control input is addressed in this article. Based on the Lyapunov theorem of stability, the single-input adaptive synchronization controllers associated with the adaptive update laws of system parameters are developed to make the states of two nearly identical 4D Lü hyperchaotic systems asymptotically synchronized. Numerical studies are presented to illustrate the effectiveness of the proposed chaotic synchronization schemes.  相似文献   

9.
This paper solves the problem of robust synchronization of nonlinear chaotic gyrostat systems in a given finite time. The parameters of both master and slave chaotic gyrostat systems are assumed to be unknown in advance. In addition, the gyrostat systems are disturbed by unknown model uncertainties and external disturbances. Suitable update laws are proposed to estimate the unknown parameters. Based on the finite-time control idea and update laws, appropriate control laws are designed to ensure the stabilization of the closed-loop system in finite time. The precise value of the convergence time is given. A numerical simulation demonstrates the applicability and efficiency of the proposed finite-time synchronization strategy.  相似文献   

10.
Modified function projective synchronization (MFPS), which generalizes many kinds of synchronization form, has received great attention recently. Based on the active control method and adaptive control technique, a general formula for designing the controllers is proposed to achieve adaptive MFPS, which corrects several incomplete results that have been reported recently. In addition, this paper derives the sufficient condition for parameter identification, which was not mentioned in much of the relevant literature concerning MFPS. Furthermore, we extend the MFPS scheme to the cases that the drive and response systems come with non-identical structures. The proposed method is both theoretically rigorous and practically feasible, which has the merits that it can not only achieve the full-state MFPS but also identify the fully unknown parameters in the synchronization process. The theoretical results are successfully applied to three typical illustrative cases: the adaptive MFPS of two identical 4-D hyperchaotic systems with unknown parameters in the response system, the adaptive MFPS between a 5-D hyperchaotic system and a 4-D hyperchaotic system with unknown parameters in the drive system and the adaptive MFPS between a 3-D chaotic system and a 4-D hyperchaotic system when the parameters in the drive system and response system are all unknown. For each case the controller functions and parameter update laws are well designed in detail. Moreover, the corresponding numerical simulations are presented, which agree well with the theoretical analysis.  相似文献   

11.
This work is devoted to investigating the complete synchronization of two identical delay hyperchaotic Lü systems with different initial conditions, and a simple complete synchronization scheme only with a single linear input is proposed. Based on the Lyapunov stability theory, sufficient conditions of synchronization are obtained for both linear feedback and adaptive control approaches. The problem of adaptive synchronization between two nearly identical delay hyperchaotic Lü systems with unknown parameters is also studied. A?single input adaptive synchronization controller is proposed, and the adaptive parameter update laws are developed. Numerical simulation results are presented to demonstrate the effectiveness of the proposed chaos synchronization scheme.  相似文献   

12.
Generalized function matrix projective lag synchronization of uncertain complex dynamical networks with different dimension of nodes via adaptive control method is investigated in this paper. Based on Lyapunov stability theory, adaptive controller is obtained and unknown parameters of both the drive network and the response network are estimated by adaptive laws. In addition, the three-dimension chaotic system and the four-dimension hyperchaotic system, respectively, as the nodes of the drive and response network are analyzed in detail, and numerical simulation results are presented to illustrate the effectiveness of the theoretical results.  相似文献   

13.
Our main objective in this work is to investigate complete synchronization (CS) of n-dimensional chaotic complex systems with uncertain parameters. An adaptive control scheme is designed to study the synchronization of chaotic attractors of these systems. We applied this scheme, as an example, to study complete synchronization of chaotic attractors of two identical complex Lorenz systems. The adaptive control functions and the parameters estimation laws are calculated analytically based on the complex Lyapunov function. We show that the error dynamical systems are globally stable. Numerical simulations are computed to check the analytical expressions of adaptive controllers.  相似文献   

14.
In this paper, the generalized synchronization of chaotic systems with different order is studied. The definition of finite-time generalized synchronization is put forward for the first time. Based on the finite-time stability theory, two control strategies are proposed to realize the generalized synchronization of chaotic systems with different order in finite time. Besides the relation between the parameter β, the initial states of systems and the convergent time were obtained. The corresponding numerical simulations are presented to demonstrate the effectiveness of proposed schemes.  相似文献   

15.
A double function Q–S synchronization (DFQSS) scheme of non-identical chaotic systems is proposed and analyzed with the assumption that all of the parameters are unknown. The sufficient conditions for achieving the double function Q–S synchronization with the desired scaling functions of two different chaotic systems (including the systems of non-identical dimension) are derived based on Lyapunov stability theory. By the adaptive control technique, the control laws and the corresponding parameter update laws are presented such that the DFQSS of non-identical chaotic systems is to be achieved. Numerical simulations and a brief discussion conclude the paper.  相似文献   

16.
Gyroscopes are one of the most interesting and everlasting nonlinear nonautonomous dynamical systems that exhibit very complex dynamical behavior such as chaos.In this paper,the problem of robust stabi...  相似文献   

17.
In this paper, a novel fractional-order terminal sliding mode control approach is introduced to control/synchronize chaos of fractional-order nonautonomous chaotic/hyperchaotic systems in a given finite time. The effects of model uncertainties and external disturbances are fully taken into account. First, a novel fractional nonsingular terminal sliding surface is proposed and its finite-time convergence to zero is analytically proved. Then an appropriate robust fractional sliding mode control law is proposed to ensure the occurrence of the sliding motion in a given finite time. The fractional version of the Lyapunov stability is used to prove the finite-time existence of the sliding motion. The proposed control scheme is applied to control/synchronize chaos of autonomous/nonautonomous fractional-order chaotic/hyperchaotic systems in the presence of both model uncertainties and external disturbances. Two illustrative examples are presented to show the efficiency and applicability of the proposed finite-time control strategy. It is worth to notice that the proposed fractional nonsingular terminal sliding mode control approach can be applied to control a broad range of nonlinear autonomous/nonautonomous fractional-order dynamical systems in finite time.  相似文献   

18.
The electromechanical gyrostat is a fourth-order nonautonomous system that exhibits very rich behavior such as chaos. In recent years, synchronization of nonautonomous chaotic systems has found many useful applications in nonlinear science and engineering fields. On the other hand, it is well known that the finite-time control techniques demonstrate good robustness and disturbance rejection properties. This paper studies the potential application of the finite-time control techniques for synchronization of nonautonomous chaotic electromechanical gyrostat systems in finite time. It is assumed that all the parameters of both drive and response systems are unknown parameters in advance. Moreover, the effects of dead-zone nonlinearities in the control inputs are also taken into account. Some adaptive controllers are introduced to synchronize two gyrostat systems in different scenarios within a given finite-time. Two illustrative examples are presented to demonstrate the efficiency and robustness of the proposed finite-time synchronization strategy.  相似文献   

19.
This work investigates the adaptive QS synchronization of non-identical chaotic systems with unknown parameters. The sufficient conditions for achieving QS synchronization of two different chaotic systems (including different dimensional systems) are derived, based on Lyapunov stability theory. By the adaptive control technique, the control laws and the corresponding parameter update laws are proposed such that the non-identical chaotic systems are to have QS synchronization. Finally, four illustrative numerical simulations are also given to demonstrate the effectiveness of the proposed scheme.  相似文献   

20.
This paper studies the problem of the circuit implementation and the finite-time synchronization for the 4D (four-dimensional) Rabinovich hyperchaotic system. The electronic circuit of 4D hyperchaotic system is designed. It is rigorously proven that global finite-time synchronization can be achieved for hyperchaotic systems which have uncertain parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号