首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate the processes of cluster formation and growth of ZnS from aqueous solution using molecular dynamics simulation techniques. The influence of both temperature and concentration is studied. We show that, at lower temperatures, the crucial process is the transformation of an outer-sphere Zn/S complex to an inner-sphere ion pair. Further growth of the latter is fast to generate negatively charged planar clusters. These clusters interact to form more stable, closed structures, which are found to be the global minima configurations in vacuo. At higher temperatures, no outer-sphere ion pairs are formed, and the larger cluster configurations form much more quickly.  相似文献   

2.
3.
Using molecular dynamics (MD), we have studied the mechanism of heat accommodation between carbon dioxide clusters and monomers for temperatures and cluster size conditions that exist in homogeneous condensing supersonic expansion plumes. The work was motivated by our meso-scale direct simulation Monte Carlo and Bhatnagar-Gross-Krook based condensation simulations where we found that the heat accommodation model plays a key role in the near-field of the nozzle expansion particularly as the degree of condensation increases [R. Kumar, Z. Li, and D. Levin, Phys. Fluids 23, 052001 (2011)]. The heat released by nucleation and condensation and the heat removed by cluster evaporation can be transferred or removed from either the kinetic or translational modes of the carbon dioxide monomers. The molecular dynamics results show that the time required for gas-cluster interactions to establish an equilibrium from an initial state of non-equilibrium is less than the time step used in meso-scale analyses [R. Kumar, Z. Li, and D. Levin, Phys. Fluids 23, 052001 (2011)]. Therefore, the good agreement obtained between the measured cluster and gas number density and gas temperature profiles with the meso-scale modeling using the second energy exchange mechanism is not fortuitous but is physically based. Our MD simulations also showed that a dynamic equilibrium is established by the gas-cluster interactions in which condensation and evaporation processes take place constantly to and from a cluster.  相似文献   

4.
The mass spectra in the range of 2(D+)-38(D19+) amu of clusters formed in a supersonic free-jet expansion of normal D2 are investigated as functions of source temperature in the range of 95-220 K and of source pressure in the range of 10-120 bars. For some of the small ion fragments, time-of-flight distributions are also measured. For large clusters (n > 200) the intensities of the odd-numbered ion fragments exhibit magic numbers at D9+ and D15+ in accordance with previous experiments and calculations. The even-numbered ion fragments have much smaller intensities and exhibit new magic numbers at D10+ and D14+. For source conditions such that large clusters are formed, the intensities of the various different ion fragments are observed to saturate beyond a certain source pressure. At lower source pressures, where only small clusters are formed, the terminal mole fractions of the neutral dimers are analyzed in the light of available theories which take into account both the thermodynamics and the kinetics of the expansion. At higher source pressures and lower temperatures, where larger clusters are formed, the sizes of the neutral clusters are estimated using scaling laws and are found to be consistent with the mass spectra and measured time-of-flight distributions. By using a variety of techniques it has been possible to obtain reliable conclusions about the neutral cluster sizes for the present free-jet expansion conditions.  相似文献   

5.
In this study we have investigated the dynamics of small water clusters using microcanonical molecular dynamics simulations. The clusters are formed by colliding vapor monomers with target clusters of two and five molecules. The monomers are sampled from a thermal ensemble at T=300 K and target clusters with several total energies are considered. We compare rigid extended simple point charge water with flexible counterparts having intramolecular harmonic bonds with force constants 10(3) and 10(5) kcal(mol A2). We show that the lifetimes of the clusters formed via collision process are similar for the rigid model and the flexible model with the bigger force constant, if the translational temperatures of the target cluster molecules are equal. The model with the smaller force constant results in much longer lifetimes due to the stabilizing effect caused by the kinetic energy transfer into internal vibration of the molecules. This process may take several hundreds of picoseconds, giving rise to time-dependent decay rates of constant-energy clusters. A study of binary collisions of water molecules shows that the introduction of flexibility to the molecules increases the possibility of dimer formation and thus offers an alternative route for dimer production in vapors. Our results imply that allowing for internal degrees of freedom is likely to enhance gas-liquid nucleation rates in water simulations.  相似文献   

6.
Gibbs ensemble Monte Carlo methods based on a force field that combines the simple point charge [Berendsen et al., in Intermolecular Forces, edited by Pullman (Reidel, Dordrecht, 1981), p. 331] and transferable potentials for phase equilibria [Martin and Siepmann, J. Phys. Chem. B 102, 2659 (1998)] models were used to study the equilibrium properties of binary systems consisting of water and n-alkanes with chain lengths from hexane to hexadecane. In addition, systems where extended linear alkane chains (up to 300 carbon units long) were used to represent amorphous polyethylene were simulated in the presence of water using a connectivity altering osmotic Gibbs ensemble. In these simulations the equilibrium between a liquid water phase and a polymer phase into which water was inserted was studied. The predicted solubilities, which were determined between 350 and 550 K, are in good agreement with experiment, where experimental results are available, and the density of water molecules in the hydrocarbons is approximately 63% as high as in saturated water vapor under the same conditions. At the lower temperatures most of the water exists as monomers; increasing the temperature leads to an increase in the density of water in the alkane phase and hence in the fraction of molecules that participate in clusters. Dimers are the most prevalent clusters in all hydrocarbons and at all temperatures studied, and the fraction of clusters of given size decrease with increasing cluster size. A large fraction of trimers, tetramers, and pentamers, which are the cluster sizes for which topologies have been studied, are cyclic at low temperatures, but at higher temperatures linear structures predominate. The same properties are observed for pure water vapor clusters in equilibrium with the liquid phase, showing that the cluster topologies are not significantly affected by the surrounding hydrocarbon.  相似文献   

7.
8.
将簇迁移动力学拓展应用到共聚形态的研究中,对醋酸乙烯酯 丙烯酸丁酯从间歇到不同加料速率下的半连续乳液共聚实验的乳胶粒形态演化过程进行了模拟,模拟从共聚 均聚转折点开始.结果说明:半连续加料时,随着加料速率加快,相分离程度增加,间歇反应时形成了核壳结构.乳胶粒形态模拟结果与文献对此共聚乳胶粒形态的实验表征结果类似.  相似文献   

9.
Cluster arrays composed of metal nanoparticles are promising for application in sensing devices because of their interesting surface plasmon characteristics. Herein, we report the spontaneous formation of cluster arrays of gold colloids on flat substrates by vertical-deposition convective self-assembly. In this technique, under controlled temperature, a hydrophilic substrate is vertically immersed in a colloid suspension. Cluster arrays form when the particle concentration is extremely low (in the order of 10(-6)-10(-8) v/v). These arrays are arranged in a hierarchically ordered structure, where the particles form clusters that are deposited at a certain separation distance from each other, to form "dotted" lines that are in turn aligned with a constant spacing. The size of the cluster can be controlled by varying the particle concentration and temperature while an equal separation distance is maintained between the lines formed by the clusters. Our technique thus demonstrates a one-step, template-free fabrication method for cluster arrays. In addition, through the direct observation of the assembly process, the spacing between the dotted lines is found to result from the "stick-and-slip" behavior of the meniscus tip, which is entirely different from the formation processes observed for the striped patterns, which we reported previously at higher particle concentrations. The difference in the meniscus behavior possibly comes from the difference in colloidal morphology at the meniscus tip. These results demonstrate the self-regulating characteristics of the convective self-assembly process to produce colloidal patterns, whose structure depends on particle concentration and temperature.  相似文献   

10.
Viruses are attractive building blocks for nanoscale heterostructures, but little is understood about the physical principles governing their directed assembly. In situ force microscopy was used to investigate organization of Cowpea Mosaic Virus engineered to bind specifically and reversibly at nanoscale chemical templates with sub-30 nm features. Morphological evolution and assembly kinetics were measured as virus flux and inter-viral potential were varied. The resulting morphologies were similar to those of atomic-scale epitaxial systems, but the underlying thermodynamics was analogous to that of colloidal systems in confined geometries. The 1D templates biased the location of initial cluster formation, introduced asymmetric sticking probabilities, and drove 1D and 2D condensation at sub-critical volume fractions. The growth kinetics followed a t(1/2) law controlled by the slow diffusion of viruses. The ability of poly(ethylene glycol) (PEG) to induce the lateral expansion of virus clusters away from the 1D templates suggests a significant role for weak interactions.  相似文献   

11.
Monomer-cluster collisions of Lennard-Jones argon atoms have been studied using molecular dynamics simulation for target cluster sizes of 2, 3, 4, 5, 10, and 20 atoms. Capture probability of monomers by clusters and the lifetimes of the resulting clusters have been calculated as a function of impact parameter and the total energy of the target cluster. Cluster lifetime is further integrated over all impact parameters to obtain the average lifetime for each cluster size and energy. The average lifetime of the smallest aggregates is shown to be short compared to the collision time between monomers and clusters unless the vapor is highly supersaturated. The formation probability of a new cluster decreases steeply if a minimum lifetime is required for the cluster.  相似文献   

12.
Brownian dynamics computer simulations of aggregation in 2D colloidal suspensions are discussed. The simulations are based on the Langevin equations, pairwise interaction between colloidal particles and take into account Brownian, hydrodynamic and colloidal forces. The chosen mathematical model enables to predict the correct values of diffusion coefficient of freely moving particle, the mean value of kinetic energy for each particle in ensemble of interacting colloidal particles and residence times of colloidal particles inside the potential wells of different depths. The simulations allow monitoring formation and breakage of clusters in a suspension as well as time dependence of the mean cluster size. The article is published in the original.  相似文献   

13.
We consider a theoretical model for a binary mixture of colloidal particles and spherical emulsion droplets. The hard sphere colloids interact via additional short-ranged attraction and long-ranged repulsion. The droplet-colloid interaction is an attractive well at the droplet surface, which induces the Pickering effect. The droplet-droplet interaction is a hard-core interaction. The droplets shrink in time, which models the evaporation of the dispersed (oil) phase, and we use Monte Carlo simulations for the dynamics. In the experiments, polystyrene particles were assembled using toluene droplets as templates. The arrangement of the particles on the surface of the droplets was analyzed with cryogenic field emission scanning electron microscopy. Before evaporation of the oil, the particle distribution on the droplet surface was found to be disordered in experiments, and the simulations reproduce this effect. After complete evaporation, ordered colloidal clusters are formed that are stable against thermal fluctuations. Both in the simulations and with field emission scanning electron microscopy, we find stable packings that range from doublets, triplets, and tetrahedra to complex polyhedra of colloids. The simulated cluster structures and size distribution agree well with the experimental results. We also simulate hierarchical assembly in a mixture of tetrahedral clusters and droplets, and find supercluster structures with morphologies that are more complex than those of clusters of single particles.  相似文献   

14.
The colloidal stability, aggregation kinetics, and cluster structure of two styrene-acrylate copolymer latexes, stabilized with an aliphatic sulfonate and an aliphatic carboxylate surfactant, respectively, have been investigated experimentally in the temperature range between 283 and 323 K. The main objective of this study is to investigate the role of temperature and surfactant type on the aggregation kinetics and cluster structure. For this, the values of the Fuchs stability ratio and the time evolutions of the average radius of gyration, hydrodynamic radius, and structure factor of the clusters have been determined using static and dynamic light scattering techniques at different temperatures. It is found that although the two latexes exhibit a somewhat different dependence of the colloidal stability on temperature, all of the values of the average radius of gyration (or hydrodynamic radius) measured at different temperatures and surfactant types, which are plotted as a function of a properly defined dimensionless time, collapse to form a single master curve. Similarly, all of the measured average structure factors also collapse to form a single master curve when they are plotted as a function of the wavevector normalized using the average radius of gyration. These results indicate that, at least for the conditions investigated in this work, the aggregation mechanism and cluster structure are independent of temperature and surfactant type.  相似文献   

15.
Two‐component self‐assembly is a promising approach to construct functional nanomaterials. Interaction of a flexible guanidiniocarbonyl pyrrole tetra‐cation ( 1 ) with naphthalene diimide dicarboxylic acid (NDIDC) in aqueous DMSO leads to the formation of supramolecular networks. First, the carboxylate groups of NDIDC bind to the guanidiniocarbonyl pyrrole cations of 1 in a 1:2 stoichiometry. Further π–π induced aggregation then leads to 3D networks, as established by dynamic light scattering studies (DLS), NMR, fluorescence titration, viscosity measurements, AFM, and TEM microscopy. Due to ion pairing, the resulting aggregates can be switched between the monomers and the aggregates reversibly using external stimuli like protonation or deprotonation. At high concentration, a stable colloidal solution is formed, which shows an extensive Tyndall effect. Increasing the concentrations even further leads to formation of a supramolecular gel.  相似文献   

16.
We studied the various stages in the preparation of a sub-monolayer film by the sequential deposition of particles (sequential quenching model) from very low to very high temperatures, a limit at which the system becomes equivalent to random sequential adsorption. Due to the finite size of the simulation box, only one cluster can be found in a system at very low temperatures (T* = 0.01 and 0.1) and its size grows linearly with increasing density. At higher temperatures (T* = 0.3 or higher), on the other hand, the same systems show a crossover from a nucleation regime to a growth regime. It is best revealed in a plot showing the distribution of monomers on the surface versus density, where the crossover region appears as a peak on a curve. At densities above the crossover, any new addition tends to contribute to the growth of an existing cluster rather than to nucleating new one.  相似文献   

17.
A model for isothermal homogeneous nucleation is proposed that improves the classical model. A quasiequilibrium distribution of clusters was calculated on a basis of the Frenkel’-Lothe-Pound theory. The dependence of the free energy of clusters on their size was represented by an interpolation formula relating the free energy of dimers and large clusters to which a notion of macroscopic surface tension is applicable. The nucleation rate and the dependence of the cluster temperature on their size were calculated by balance equations describing the heating of from a cluster due to the condensation of monomers and its cooling due to collisions with an ambient gas. It is shown that the nucleation rate in excess buffer gas is higher than for the pure condensing gas by approximately two orders of magnitude. The model adequately describes the experimental data for the nucleation of methanol supersaturated vapor.  相似文献   

18.
We report on the first synthesis of a heterostructured semiconductor tetrapod from CdSe@CdS that carries a single dipolar nanoparticle tip from a core–shell colloid of Au@Co. A four‐step colloidal total synthesis was developed, where the key step in the synthesis was the selective deposition of a single AuNP tip onto a CdSe@CdS tetrapod under UV‐irradiation. Synthetic accessibility to this dipolar heterostructured tetrapod enabled the use of these as colloidal monomers to form colloidal polymers that carry the semiconductor tetrapod as a side chain group attached to the CoNP colloidal polymer main chain. The current report details a number of novel discoveries on the selective synthesis of an asymmetric heterostructured tetrapod that is capable of 1D dipolar assembly into colloidal polymers that carry tetrapods as side chain groups that mimic “giant tert‐butyl groups”.  相似文献   

19.
The thin-film growth has been confirmed to be assembled by an enormous number of clusters in ICBD method. In sequence of clusters’ depositions proceeds to form the thin-film to understand quantitatively the interaction mechanisms between the cluster atoms and the substrate atoms, we use molecular dynamics simulation with EAM potential. The quantitative of flatness of deposition and percent of disordered atoms were proposed to evaluate the property of thin-film. In this simulation, three different Co cluster sizes of 55, 70, and 100 atoms with different velocities (100 up to 800 m/s) were deposited on a Al(0 0 1) substrate whose temperatures were set between 300 and 500 K. The simulations begin at specific equilibrium temperature of clusters and the substrate. The simulations are performed at different temperatures of the clusters and substrate and for different sizes of clusters. We showed that the percent of disordered atoms of substrate are affected by the cluster size and velocity of the clusters. Temperature dependence of the number of disordered atoms for different cluster’s velocity was observed. We investigated the effect of cluster size and initial velocity of cluster on the value of flatness.  相似文献   

20.
Adsorption and spontaneous polymerization of head- or tail-type surface active monomers having long methylene chains on colloidal silica and δ-alumina were investigated. Both head-type and tail-type ammonium monomers on silica in chloroform or tetrahydrofuran had the maximum adsorption on the respective adsorption isotherm. Above the monomer concentration giving the maximum adsorption, it was observed that the monomer formed micelles or clusters in bulk solution with removal of adsorbed water molecules from the silica surface. At the monomer concentration giving the maximum adsorption, heating the silica suspension containing the monomer at 40°C or 60°C in tetrahydrofuran or chloroform solution resulted in spontaneous polymerization. The composite particles formed by polymerization were observed to have many spots consisting of polymer on the surface. Therefore, it is suggested that the monomers are concentrated by micelle-like aggregation on the silica surface and consecutively spontaneous polymerization takes place. Adsorption of an anion-type monomer having a carboxyl group on δ-alumina, which exhibited a positive ζ potential in neutral aqueous solution, was higher than that on colloidal silica, but did not spontaneously polymerize on alumina. Received: 13 June 1998 Accepted in revised form: 19 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号