首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A sensitive and specific capillary gas chromatographic (GC) assay was developed for the quantitation of the quaternary ammonium steroidal neuromuscular blocking drugs pancuronium (PANC), vecuronium (VEC) and pipecuronium (PIP), as well as the metabolites 3-desacetylpancuronium (3-desPANC) and 3-desacetylvecuronium (3-des VEC) in plasma, bile and urine; the putative metabolite 3-desacetylpipecuronium (3-des PIP) was extracted and quantitated only in urine. The procedure employed a single dichloromethane extraction of the iodide ion-pairs of the monoquaternary or bisquaternary ammonium compounds (including internal and external standards) from acidified, ether-washed biological fluid followed by the formation of stable O-tert.-butyldimethylsilyl derivatives at the 3-hydroxy steroidal position of the metabolites. An automated capillary GC system fitted with a nitrogen-sensitive detector and an integrator was then used to analyze and quantitate both parent compounds and their derivatized metabolites. Optimal extraction, derivatization and GC conditions, as well as short-term stability and recoveries of these drugs and metabolites in plasma, are reported. Electron ionization mass spectrometry combined with GC was used to confirm the identities of compounds eluted from the column. The assay demonstrated a 10(3)-fold linear range up to 5000 ng/ml for PANC, VEC, 3-des VEC and PIP, and lower limits of detection with adequate precision of 2 ng/ml for PANC, VEC and PIP, and 4 ng/ml for 3-des VEC; 3-des PANC was linear from 8 to 500 ng/ml while 3-des PIP was linear from 25 to 1000 ng/ml. The precision (coefficient of variation) of the calibration curves for underivatized drugs and their derivatized metabolites over the linear ranges was 2-20% and the reproducibility of the assay over a range of clinical concentrations of these drugs found in human plasma was 5-16% for PANC, 2-4% for VEC and 6-11% for PIP. No interferences were detected in the assay of plasma samples from 106 surgical patients.  相似文献   

2.
The administration of growth-promoting agents such as human growth hormone as well as compounds with respective secretagogue activity is prohibited in sports according to the regulations of the World Anti-Doping Agency. Acetylcholine esterase inhibitors have been demonstrated to stimulate growth-hormone secretion in elderly humans, and new orally active drugs have been developed to provide alternatives to therapeutic injections of growth-hormone preparations. Preventive anti-doping strategies include method development for emerging drugs and potentially misused compounds. Hence, the mass spectrometric dissociation behavior of three acetylcholine esterase inhibitors (donepezil, galantamine and rivastigmine) and a structural analogue to the growth-hormone secretagogue SM-130686 were studied using high-resolution/high-accuracy orbitrap mass spectrometry. These data provided substantial information for screening procedures, complementing common methods of sports drug testing. Using liquid-liquid extraction and subsequent liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis, the four target analytes were determined at urinary concentrations of 15-20 ng/mL, recoveries ranged from 55-97%, and assay precisions were calculated at 5.2-15.8% (intraday) and 10.2-21.6% (interday) for all compounds. The applicability of the developed assay to authentic urine specimens was tested using two administration study urine samples after application of Reminyl (galantamine) and Aricept (donepezil). In both cases, the administered drug and the respective desmethylated metabolites were detected.  相似文献   

3.
A library of collision-induced dissociation (CID) accurate mass spectra has been developed for efficient use of liquid chromatography in combination with hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) as a tool in systematic toxicological analysis. The mass spectra (Δm < 3 ppm) of more than 2,500 illegal and therapeutic drugs, pesticides, alkaloids, other toxic chemicals and metabolites were measured, by use of an Agilent 6530 instrument, by flow-injection of 1 ng of the pure substances in aqueous ammonium formate-formic acid-methanol, with positive and negative electrospray-ionization (ESI), selection of the protonated or deprotonated molecules [M+H](+) or [M-H](-) by the quadrupole, and collision induced dissociation (CID) with nitrogen as collision gas at CID energies of 10, 20, and 40 eV. The fragment mass spectra were controlled for structural plausibility, corrected by recalculation to the theoretical fragment masses and added to a database of accurate mass data and molecular formulas of more than 7,500 toxicologically relevant substances to form the "database and library of toxic compounds". For practical evaluation, blood and urine samples were spiked with a mixture of 33 drugs at seven concentrations between 0.5 and 500 ng mL(-1), prepared by dichloromethane extraction or protein precipitation, and analyzed by LC-QTOF-MS in data-dependent acquisition mode. Unambiguous identification by library search was possible for typical basic drugs down to 0.5-2 ng mL(-1) and for benzodiazepines down to 2-20 ng mL(-1). The efficiency of the method was also demonstrated by re-analysis of venous blood samples from 50 death cases and comparison with previous results. In conclusion, LC-QTOF-MS in data-dependent acquisition mode combined with an accurate mass database and CID spectra library seemed to be one of the most efficient tools for systematic toxicological analysis.  相似文献   

4.
The misuse of fentanyl, and novel synthetic opioids (NSO) in general, has become a public health emergency, especially in the United States. The detection of NSO is often challenged by the limited diagnostic time frame allowed by urine sampling and the wide range of chemically modified analogues, continuously introduced to the recreational drug market. In this study, an untargeted metabolomics approach was developed to obtain a comprehensive “fingerprint” of any anomalous and specific metabolic pattern potentially related to fentanyl exposure. In recent years, in vitro models of drug metabolism have emerged as important tools to overcome the limited access to positive urine samples and uncertainties related to the substances actually taken, the possible combined drug intake, and the ingested dose. In this study, an in vivo experiment was designed by incubating HepG2 cell lines with either fentanyl or common drugs of abuse, creating a cohort of 96 samples. These samples, together with 81 urine samples including negative controls and positive samples obtained from recent users of either fentanyl or “traditional” drugs, were subjected to untargeted analysis using both UHPLC reverse phase and HILIC chromatography combined with QTOF mass spectrometry. Data independent acquisition was performed by SWATH in order to obtain a comprehensive profile of the urinary metabolome. After extensive processing, the resulting datasets were initially subjected to unsupervised exploration by principal component analysis (PCA), yielding clear separation of the fentanyl positive samples with respect to both controls and samples positive to other drugs. The urine datasets were then systematically investigated by supervised classification models based on soft independent modeling by class analogy (SIMCA) algorithms, with the end goal of identifying fentanyl users. A final single-class SIMCA model based on an RP dataset and five PCs yielded 96% sensitivity and 74% specificity. The distinguishable metabolic patterns produced by fentanyl in comparison to other opioids opens up new perspectives in the interpretation of the biological activity of fentanyl.  相似文献   

5.
Since January 2006, the list of prohibited substances established by the World Anti-Doping Agency includes the antidepressant / anti-obesity drug Sibutramine. Due to its rapid degradation to its active metabolites N-desmethyl and N-bisdesmethyl Sibutramine, reference compounds were synthesized and included into an existing screening assay to allow the unambiguous determination of these metabolic products in human urine using liquid-liquid extraction followed by liquid chromatography/tandem mass spectrometry. Characteristic product ions, obtained after electrospray ionization and collision-induced dissociation, were elucidated using high resolution/high accuracy mass measurements with a hybrid linear ion trap/orbitrap mass analyzer. Based on diagnostic product ions, the extended screening procedure was validated for both Sibutramine metabolites using a triple quadrupole mass spectrometer. Items such as lower limits of detection (6-40 ng mL(-1)), recoveries (39-42%), intraday precision (low: 5.5-10.6%, medium: 4.9-5.9%), high: 12.8-16.4%) and interday precision (low: 15.0-22.8%, medium: 17.7-18.6%), high: 16.5-25.6%) were evaluated, and a clinical spot urine sample was analyzed to demonstrate the applicability of the developed assay in sports drug testing.  相似文献   

6.
The opioid 3-methylfentanyl, a designer drug of the fentanyl type, was scheduled by the Controlled Substance Act due to its high potency and abuse potential. To overcome this regulation, isofentanyl, another designer fentanyl, was synthesized in a clandestine laboratory and seized by the German police. The aims of the presented study were to identify the phase I and phase II metabolites of 3-methylfentanyl and isofentanyl in rat urine, to identify the cytochrome P450 (CYP) isoenzymes involved in their initial metabolic steps, and, finally, to test their detectability in urine. Using liquid chromatography (LC)–linear ion trap–mass spectrometry (MSn), nine phase I and five phase II metabolites of 3-methylfentanyl and 11 phase I and four phase II metabolites of isofentanyl could be identified. The following metabolic steps could be postulated for both drugs: N-dealkylation followed by hydroxylation of the alkyl and aryl moiety, hydroxylation of the propanamide side chain followed by oxidation to the corresponding carboxylic acid, and, finally, hydroxylation of the benzyl moiety followed by methylation. In addition, N-oxidation of isofentanyl could also be observed. All hydroxy metabolites were partly excreted as glucuronides. Using recombinant human isoenzymes, CYP2C19, CYP2D6, CYP3A4, and CYP3A5 were found to be involved in the initial metabolic steps. Our LC-MSn screening approach allowed the detection of 0.01 mg/L of 3-methylfentanyl and isofentanyl in spiked urine. However, in urine of rats after the administration of suspected recreational doses, the parent drugs could not be detected, but their common nor metabolite, which should therefore be the target for urine screening.  相似文献   

7.
N-Aryl-hydroxybicyclohydantoins represent a new class of tissue-selective anabolic agents [selective androgen receptor modulators (SARMs)] and are promising therapeutics as well as drugs prohibited in amateur and professional sport. The dissociation behavior after negative and positive electrospray ionization (ESI) and subsequent collision-induced dissociation (CID) was studied with a drug candidate (BMS 564929) as well as structurally related and isotope-labeled analogs using high resolution/high accuracy orbitrap mass spectrometry. Positive ionization and CID yielded characteristic product ions resulting from the cleavage of the hydantoin structure providing information about the proline-derived nucleus as well as the substituted aryl residue at m/z 96 and 193, respectively. Negative ESI and CID (MS/MS) yielded product ions mainly representing losses of water and CO(2), the latter of which is of particular significance as the hydantoin structure does not contain a carboxyl function. Employing MS(n) experiments with accurate mass determination on six model SARMs, dissociation pathways to characteristic product ions were proposed supporting the identification of these drugs, their metabolites or related compounds in future doping control assays.  相似文献   

8.
Presented is the first comprehensive study of drugs of abuse on suspended particulate matter (SPM) in wastewater. Analysis of SPM is crucial to prevent the under-reporting of the levels of analyte that may be present in wastewater. Analytical methods to date analyse the aqueous part of wastewater samples only, removing SPM through the use of filtration or centrifugation. The development of an analytical method to determine 60 compounds on SPM using a combination of pressurised liquid extraction, solid phase extraction and liquid chromatography coupled with tandem mass spectrometry (PLE-SPE-LC-MS/MS) is reported. The range of compounds monitored included stimulants, opioid and morphine derivatives, benzodiazepines, antidepressants, dissociative anaesthetics, drug precursors, and their metabolites. The method was successfully validated (parameters studied: linearity and range, recovery, accuracy, reproducibility, repeatability, matrix effects, and limits of detection and quantification). The developed methodology was applied to SPM samples collected at three wastewater treatment plants in the UK. The average proportion of analyte on SPM as opposed to in the aqueous phase was <5% for several compounds including cocaine, benzoylecgonine, MDMA, and ketamine; whereas the proportion was >10% with regard to methadone, EDDP, EMDP, BZP, fentanyl, nortramadol, norpropoxyphene, sildenafil and all antidepressants (dosulepin, amitriptyline, nortriptyline, fluoxetine and norfluoxetine). Consequently, the lack of SPM analysis in wastewater sampling protocol could lead to the under-reporting of the measured concentration of some compounds.  相似文献   

9.
Anabolic agents have been among the most frequently detected drugs in amateur and professional sport. A novel class of therapeutics presumably complementing anabolic steroids in the near future includes so-called selective androgen receptor modulators (SARMs) that have been under clinical investigations for several years. Although not yet commercially available, their potential for misuse in sports is high. Four aryl-propionamide-derived SARMs were synthesized in order to establish a fast and robust screening procedure using liquid chromatography/electrospray ionization tandem mass spectrometry. Synthesized compounds were characterized by high-resolution/high-accuracy mass analysis employing a linear ion trap-Orbitrap hybrid mass spectrometer while routine analyses were conducted on a triple-quadrupole mass spectrometer. Characteristic product ions obtained by collision-induced dissociation were found at m/z 289 and 261 as well as m/z 269 and 241 representing the bisubstituted aniline residues of selected model compounds. Assay validation was performed regarding lower limit of detection (1 ng/mL), recovery (85-105%), intraday precision (7.6-11.6%) and interday precision (9.9-14.4%), and precursor ion scan experiments on diagnostic product ions enabled the detection of a structurally related compound at 50 ng/mL.  相似文献   

10.
A qualitative method, involving supported liquid–liquid extraction (SLE) and ultra high pressure liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS–MS), was developed for the rapid tentative identification of various drugs of abuse in urine. In this study, 28 drugs and metabolites were covered by the screening procedure. Before analysis, urine samples were extracted by SLE and good extraction recoveries were obtained for most investigated compounds. The UHPLC strategy was then selected for the rapid separation of amphetamines, cocaine, opiates and related compounds in urine. Using columns packed with sub-2 µm particles, analysis time was reduced down to 2 min, while maintaining acceptable performance. Finally, the detection was by tandem MS operating in the single reaction monitoring (SRM) mode. The most intense transition was selected for the different drugs and SRM dwell times set at 5 ms, to maintain sufficient data points across the narrow UHPLC peaks. The tentative identification of the drugs of interest, including amphetamines, opiates and cocaine, was based on both, retention times and mass spectrometry information. With the proposed method, limits of detection were estimated at about 1 ng mL?1 and the applicability was assessed by successfully analyzing several samples of drug abusers. Finally, this study demonstrates the potential of UHPLC coupled to tandem MS for the rapid screening of drugs of abuse in urine.  相似文献   

11.
The continuing emergence of designer drugs imposes high demands on the scope and sensitivity of toxicological drug screening procedures. An ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry (UHPLC-HR-TOFMS) method was developed for screening and simultaneous confirmation of both designer drugs and other drugs of abuse in urine samples in a single run. The method covered selected synthetic cannabinoids and cathinones, amphetamines, natural cannabinoids, opioids, cocaine and other important drugs of abuse, together with their main urinary metabolites. The database consisted of 277 compounds with molecular formula and exact monoisotopic mass; retention time was included for 192 compounds, and primary and secondary qualifier ion exact mass for 191 and 95 compounds, respectively. Following a solid-phase extraction, separation was performed by UHPLC and mass analysis by HR-TOFMS. MS, and broad-band collision-induced dissociation data were acquired at m/z range 50–700. Compound identification was based on a reverse database search with acceptance criteria for retention time, precursor ion mass accuracy, isotopic pattern and abundance of qualifier ions. Mass resolving power in spiked urine samples was on average FWHM 23,500 and mass accuracy 0.3 mDa. The mean and median cut-off concentrations determined for 75 compounds were 4.2 and 1 ng/mL, respectively. The range of cut-off concentrations for synthetic cannabinoids was 0.2–60 ng/mL and for cathinones 0.7–15 ng/mL. The method proved to combine high sensitivity and a wide scope in a manner not previously reported in drugs of abuse screening. The method’s feasibility was demonstrated with 50 authentic urine samples.
Figure
Extracted ion chromatograms of metabolites of synthetic cannabinoids and their fragments, including a new common metabolite: JWH-072-propanoic acid  相似文献   

12.
A liquid chromatography with tandem mass spectrometry method was developed for the simultaneous screening of 34 drugs and poisons in forensic cases. Blood (0.5 mL, diluted 1:1 with water) or 1.0 mL of urine was purified by solid‐phase extraction. Gastric contents (diluted 1:1 with water) were treated with acetonitrile, centrifuged, and supernatant injected. Detection was achieved using a Waters Alliance 2695/Quattro Premier XE liquid chromatography tandem mass spectrometry system equipped with electrospray ionization, operated in the multiple reaction monitoring modes. The method was validated for accuracy, precision, linearity, and recovery. The absolute recovery of drugs and toxic compounds in blood was greater than 51% with the limit of detection in the range of 0.02–20 ng/mL. The absolute recovery of drugs and toxic compounds in urine was greater than 61% with limit of detection in the range of 0.01–10 ng/mL. The matrix effect of drugs and toxic compounds in urine was 65–117% and 67–121% in blood. The limit of detection of drugs and toxic compounds in gastric content samples were in the range of 0.05–20 ng/mL. This method was applied to the routine analysis of drugs and toxic compounds in postmortem blood, urine, and gastric content samples. The method was applied to actual forensic cases with examples given.  相似文献   

13.
The development of a liquid chromatography high-resolution mass spectrometry quadrupole-time-of-flight (LC-HRMS-QTOF) method for the analysis of new stimulant designer drugs (e.g. phenethylamine, amphetamine, cathinone and piperazine derivatives) and common drugs of abuse (e.g. ketamine and ritalinic acid) in urine is reported. Sample preparation was carried out by a fast and convenient salting-out liquid-liquid extraction (SALLE) procedure. The data was generated by a preferred target list combined with untargeted data-dependent acquisition recording additional sample information (i.e. not listed metabolites of target compounds or not database-stored drugs). The identification is realised by a fully automated data extraction algorithm, taking into account accurate mass spectra, fragment masses and retention times. Method validation comprised selectivity, linearity, accuracy, stability, determination of the limit of detection (LOD) and limit of quantification (LOQ) and evaluation of matrix effects and recoveries for a total set of 39 compounds. Acceptable quantitative results were obtained for 35 of the 39 analytes. Exemplarily, application of the additional untargeted data-dependent acquisition mode enabled the identification of metabolites of the preferred target list compounds ketamine and methylenedioxypyrovalerone (MDPV) without use of reference standards. Therefore, improvement of the database is feasible with every positive library hit. The approach presented here provides a very useful tool for the combined targeted and untargeted analysis of drugs of abuse in biological matrices such as urine.  相似文献   

14.
The application of electrospray ionization (ESI) ion trap mass spectrometry in the characterization of O-glucuronide conjugates of some drugs in urine is described. The conjugated metabolites formed in rabbit and human were separated by reversed-phase high-performance liquid chromatography (HPLC) and characterized by multi-stage mass spectrometry (MSn) experiments in negative ion mode. The ESI mass spectra showed a deprotonated molecule [M–H], which was chosen as precursor ion. Collision-induced dissociation (CID) of [M–H] in MSn experiments resulted in the appearance of glucuronate ‘fingerprint’ ions at m/z 175 and 113 as well as prominent aglycone ions which were the same as those produced from authentic specimens. This information can be used to identify this type of compound directly without the need for derivatization or hydrolysis of enzymes, providing a rapid and specific method for guiding the isolation and characterization of similar compounds in complex matrices with LC/MS.  相似文献   

15.
李慧  崔兰冲  章国磊  张萌萌  焦丽丽  吴巍 《色谱》2021,39(5):518-525
基于超高效液相色谱-串联质谱(UPLC-MS/MS)建立定量分析色氨酸(Trp)及代谢产物3-OH-犬尿氨酸(3-OH-Kyn)、3-OH-邻氨基苯甲酸(3-OH-AA)、黄尿酸(XA)、犬尿氨酸(Kyn)、5-羟基吲哚乙酸(5-HIAA)、犬尿喹啉酸(KA)和5-羟色胺(5-HT)的方法,应用该方法分析其在尿样中的含量,探讨排泄规律。将尿样稀释、离心后,加入丹磺酰氯(DNS-Cl)衍生,经Thermo C18色谱柱(50 mm×3 mm, 2.7 μm)分离和0.1%甲酸和甲醇梯度洗脱后,采用电喷雾电离(ESI)源,在正离子扫描和多反应监测(MRM)模式下检测。以咖啡酸(CA)为内标,定量分析。结果显示,8种目标化合物的线性关系良好,相关系数(R 2)≥0.9740,检测灵敏(LOD为0.005~0.5 ng/mL),回收率高(93.24%~107.65%)。采用本方法检测分析了健康志愿者70个尿液样本,在尿样中检测到Trp原型及其7种代谢产物。结果表明,体内的Trp是通过原型和代谢两种方式排泄:Trp原型的含量为5.22~20.88 μg/mL;尿液中经代谢后排泄的Trp量是原型的124%~268%,即体内的Trp主要经代谢后排出体外。方法主要研究了Trp-5-HT和Trp-Kyn两条途径的代谢产物含量,Trp经Kyn降解生成的3-OH-AA和3-OH-Kyn含量较多,即Trp-Kyn是体内Trp的主要代谢途径。方法通过UPLC-MS/MS实现了尿液中Trp及其代谢产物含量的检测,能为临床检查提供技术和理论支持。  相似文献   

16.
Fentanyl has become pervasive as a drug of abuse and as adulterant in seized drugs. Positional isomers analyzed by gas chromatography with mass spectrometry can follow the same fragmentation pathway and therefore may not be differentiated. Additionally, electron ionization leads to lack of discernible molecular ion for most fentanyl related compounds. Liquid chromatography may be used as an orthogonal identification technique with diode array ultraviolet and mass spectrometric detection. Here we provide a chromatographic method for the separation of 20 different fentanyl analogues, homologues and positional isomers using ultra high performance liquid chromatography with photodiode array ultraviolet and mass spectrometry detection. Five different columns were investigated utilizing reverse phase chromatography and hydrophilic interaction chromatography. Chromatographic systems were evaluated to determine which could separate the most compounds overall, as well as the most positional isomers. We found that isocratic elution, with a methanol modifier (35%) and formic acid (0.1%) as an additive, on a C18 column at a temperature of 25°C could resolve 10/20 compounds overall and 16/20 positional isomers. Using electrospray ionization, compounds with different masses could easily be distinguished based on their pseudo molecular ions. Ultraviolet detection facilitated differentiation of positional isomers that could not be distinguished by either electron ionization or electrospray ionization mass spectrometry alone.  相似文献   

17.
When cocaine is smoked, a pyrolytic product, methyl ecgonidine (anhydroecgonine methyl ester), is also consumed with the cocaine. The amount of methyl ecgonidine formed depends on the pyrolytic conditions and composition of the illicit cocaine. This procedure describes detection of cocaine and 10 metabolites--cocaethylene, nor-cocaine, nor-cocaethylene, methyl ecgonine, ethyl ecgonine, benzoylecgonine, nor-benzoylecgonine, m-hydroxybenzoylecgonine, p-hydroxybenzoylecgonine and ecgonine--in blood and urine. In addition, the detection of pyrolytic methyl ecgonidine and three metabolites--ecgonidine (anhydroecgonine), ethyl ecgonidine (anhydroecgonine ethyl ester) and nor-ecgonidine (nor-anhydroecgonine)--are included. The newly described metabolites, ethyl ecgonidine and nor-ecgonidine, were synthesized and characterized by gas chromatography-mass spectrometry (GC-MS). All 15 compounds were extracted from 3 mL of blood or urine by solid-phase extraction and identified by a GC-MS method. The overall recoveries were 49% for methyl ecgonine, 35% for ethyl ecgonine, 29% for ecgonine and more than 83% for all other drugs. The limits of detection were between 0.5 and 4.0 ng/mL except for ecgonine, which was 16 ng/mL. Linearity for each analyte was established and in all cases correlation coefficients were 0.9985-1.0000. The procedure was applied to examine the concentration profiles of analytes of interest in post-mortem (PM) blood and urine, and in urine collected from living individuals (LV). These specimens previously were shown to be positive for the cocaine metabolite, benzoylecgonine. Ecgonidine, the major metabolite of methyl ecgonidine, was present in 77% of PM and 88% of the LV specimens, indicating smoking as the major route of cocaine administration. The new pyrolytic metabolites, ethyl ecgonidine and nor-ecgonidine, were present in smaller amounts. The urine concentrations of nor-ecgonidine were 0-163 ng/mL in LV and 0-75 ng/mL in PM specimens. Ethyl ecgonidine was found only in PM urine at concentrations 0-39 ng/mL. Ethanol-related cocaine metabolites, ethyl ecgonine or cocaethylene, were present in 69% of PM and 53% of cocaine-positive LV specimens, implying alcohol consumption with cocaine use. The four major metabolites of cocaine--benzoylecgonine, ecgonine, nor-benzoylecgonine and methyl ecgonine--constituted approximately 88 and 97% of all metabolites in PM and LV specimens, respectively. The concentrations of nor-cocaine and nor-cocaethylene were consistently the lowest of all cocaine metabolites. At benzoylecgonine concentrations below 100 ng/mL, ecgonine was present at the highest concentrations. In 20 urine specimens, benzoylecgonine and ecgonine median concentrations (range) were 54 (0-47) and 418 ng/mL (95-684), respectively. Therefore, detection of ecgonine is advantageous when benzoylecgonine concentrations are below 100 ng/mL.  相似文献   

18.
张秀尧  蔡欣欣  张晓艺 《色谱》2010,28(1):23-33
针对公共卫生突发事件和临床毒物学检测实践中亟待解决的问题,建立了血浆和尿液中42种精神药物及其代谢产物的超高效液相色谱-串联质谱(UPLC-MS/MS)快速确证分析方法。样品经乙腈沉淀后,以乙酸铵和甲醇-乙腈(1:1, v/v)混合液作为流动相进行梯度洗脱,在Acquity UPLC BEH C18色谱柱上分离后用电喷雾串联质谱法检测,采用正、负离子快速切换多反应监测模式监测,基质标准同位素内标法定量。血浆样品中待测组分的加标回收率除了奋乃静、硫利哒嗪和氯丙嗪的分别为37.6%~57.5%, 36.3%~48.3%和52.4%~67.4%外,尿液样品中待测组分的加标回收率除了曲唑酮和地西泮的分别为100%~142%和108%~177%外,血浆和尿液中其余待测组分的加标回收率分别为60.2%~125%和64.5%~126%,相对标准偏差分别为0.8%~26%和2.6%~18%(n=6);除了巴比妥类药物的检出限为20~100 mg/L外,其余药物的检出限均为0.05~2.0 mg/L。该方法简单、快速、特异性强、灵敏度高。  相似文献   

19.
Results of aerobic biodegradation of alkyl ethoxylates (AEOs), of nonylphenol polyethoxylates (NPEOs), and of NPEO derivatives (sulfonates and sulfates), as well as anaerobic NPEO biodegradation monitored by flow injection analysis (FIA) or liquid chromatographic separation (LC) in combination with mass (MS) and tandem mass spectrometry (MS-MS) are presented. The application of visual pattern recognition in the FIA-MS mode showed quite different degradation pathways for C13-AEOs, so that aldehyde compounds as metabolites could be confirmed by collision-induced dissociation for the first time. Methyl ethers of AEO compounds were found to be persistent under aerobic conditions, while NPEO degradation resulted in nonylphenol polyether carboxylates. FIA- and LC-MS proved that NPEO derivatives used as anionic surfactants were either non-biodegradable (nonylphenol diethoxy sulfonate) or were primarily degraded (nonylphenol polyethoxy sulfates) into compounds of the same molar masses yet of different retention behaviour. Anaerobic degradation of NPEOs led to the generation of nonylphenols, which was confirmed by GC-MS.  相似文献   

20.
A simple and rapid method using reversed-phase liquid chromatography/tandem mass spectrometry (LC/MS/MS) for the simultaneous determination of the urinary metabolites of benzene, toluene, xylene and styrene in human urine specimens and standard solutions is described. A hybrid quadrupole/time-of-flight (QqTOF) mass spectrometer was compared for the determination of metabolite of aromatic solvents in urine samples. The metabolites selected were: trans,trans-muconic acid, hippuric acid, o-, m- and p-methylhippuric acid and phenylglyoxylic acid. The compounds were well separated from each other on narrow-bore 1-mm i.d. reversed-phase LC C-18 columns. Average recoveries for loading 100 microL of urine samples varied from 88-110% and the quantification limits were less than 30 ng/mL for each analyte (3 ng/mL for trans,trans-muconic acid). The qualitative information obtained (mass accuracy, resolution and full-scan spectra) with the QqTOF mass spectrometer allows a secure identification of analytes in biological matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号