首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Validity of the centroid molecular dynamics (CMD) and ring polymer molecular dynamics (RPMD) in quantum liquids is studied on an assumption that momenta of liquid particles relax fast. The projection operator method allows one to derive the generalized Langevin equation including a memory effect for the full-quantum canonical (Kubo-transformed) correlation function. Similar equations for the CMD and RPMD correlation functions can be derived too. The comparison of these equations leads to conditions under which the RPMD and CMD correlation functions agree approximately with the full-quantum canonical correlation function. The condition for the RPMD is that the memory effects of the full-quantum and RPMD equations vanish quickly with the same time constants. The CMD correlation function requires additional conditions concerning static correlation.  相似文献   

2.
The Feynman-Kleinert linearized path integral molecular dynamics (FK-LPI), ring polymer molecular dynamics (RPMD), and centroid molecular dynamics (CMD) methods are applied to the simulation of normal liquid helium. Comparisons of the simulation results at the T = 4 K and rho = 0.01873 A-3 state point are presented. The calculated quantum correlation functions for the three methods show significant differences, both in the short time and in the intermediate regions of the spectrum. Our simulation results are also compared to the recent results of other approximate quantum simulation methods. We find that FK-LPI qualitatively agrees with other approximate quantum simulation results while CMD and RPMD predict a qualitatively different impulsive rebound in the velocity autocorrelation function. Frequency space analysis reveals that RPMD exhibits a broad high-frequency tail similar to that from quantum mode coupling theory and numerical analytic continuation approaches, while FK-LPI provides a somewhat more rapid decay at high frequency than any of these three methods. CMD manifests a high-frequency component that is greatly reduced compared with the other methods.  相似文献   

3.
The maximum entropy analytic continuation (MEAC) and ring polymer molecular dynamics (RPMD) methods provide complementary approaches to the calculation of real time quantum correlation functions. RPMD becomes exact in the high temperature limit, where the thermal time betavariant Planck's over 2pi tends to zero and the ring polymer collapses to a single classical bead. MEAC becomes most reliable at low temperatures, where betavariant Planck's over 2pi exceeds the correlation time of interest and the numerical imaginary time correlation function contains essentially all of the information that is needed to recover the real time dynamics. We show here that this situation can be exploited by combining the two methods to give an improved approximation that is better than either of its parts. In particular, the MEAC method provides an ideal way to impose exact moment (or sum rule) constraints on a prior RPMD spectrum. The resulting scheme is shown to provide a practical solution to the "nonlinear operator problem" of RPMD, and to give good agreement with recent exact results for the short-time velocity autocorrelation function of liquid parahydrogen. Moreover these improvements are obtained with little extra effort, because the imaginary time correlation function that is used in the MEAC procedure can be computed at the same time as the RPMD approximation to the real time correlation function. However, there are still some problems involving long-time dynamics for which the RPMD+MEAC combination is inadequate, as we illustrate with an example application to the collective density fluctuations in liquid orthodeuterium.  相似文献   

4.
The recently introduced approximate many-body quantum simulation method, ring polymer molecular dynamics (RPMD), is compared to the centroid molecular dynamics method (CMD). Comparisons of simulation results for liquid para-hydrogen at two state points and liquid ortho-deuterium at one state point are presented. The calculated quantum correlation functions for the two methods are shown to be in good agreement with one another for a large portion of the time spectrum. However, as the quantum mechanical nature of the system increases, RPMD is less accurate in predicting the kinetic energy of the system than is CMD. A simplified and highly efficient algorithm is proposed which largely corrects this deficiency.  相似文献   

5.
We further develop the ring polymer molecular dynamics (RPMD) method for calculating chemical reaction rates [I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 122, 084106 (2005)]. We begin by showing how the rate coefficient we obtained before can be calculated in a more efficient way by considering the side functions of the ring-polymer centroids, rather than averaging over the side functions of the individual ring-polymer beads. This has two distinct advantages. First, the statistics of the phase-space average over the ring-polymer coordinates and momenta are greatly improved. Second, the resulting flux-side correlation function converges to its long-time limit much more rapidly. Indeed the short-time limit of this flux-side correlation function already provides a "quantum transition state theory" approximation to the final rate coefficient. In cases where transition state recrossing effects are negligible, and the transition state dividing surface is put in the right place, the RPMD rate is therefore obtained almost instantly. We then go on to show that the long-time limit of the new flux-side correlation function, and hence the fully converged RPMD reaction rate, is rigorously independent of the choice of the transition state dividing surface. This is especially significant because the optimum dividing surface can often be very difficult to determine for reactions in complex chemical systems.  相似文献   

6.
7.
Inversion symmetry is included in the operator formulation of the centroid molecular dynamics (CMD). This work involves the development of a symmetry-adapted CMD (SA-CMD), here particularly for symmetrization and antisymmetrization projections. A symmetry-adapted quasidensity operator, as defined by Blinov and Roy [J. Chem. Phys. 115, 7822 (2001)], is employed to obtain the centroid representation of quantum mechanical operators. Numerical examples are given for a single particle confined to one-dimensional symmetric quartic and symmetric double-well potentials. Two SA-CMD simulations are performed separately for both projections, and centroid position autocorrelation functions are obtained. For each projection, the quality of the approximation as well as the accuracy are similar to those of regular CMD. It is shown that individual trajectories from two separate SA-CMD simulations can be properly combined to recover trajectories for Boltzmann statistics. Position autocorrelation functions are compared to the exact quantum mechanical ones. This explicit account of inversion symmetry provides a qualitative improvement on the conventional CMD approach and allows the recovery of some quantum coherence.  相似文献   

8.
In a recent paper, we have developed an efficient implementation of the ring polymer molecular dynamics (RPMD) method for calculating bimolecular chemical reaction rates in the gas phase, and illustrated it with applications to some benchmark atom-diatom reactions. In this paper, we show that the same methodology can readily be used to treat more complex polyatomic reactions in their full dimensionality, such as the hydrogen abstraction reaction from methane, H + CH(4) → H(2) + CH(3). The present calculations were carried out using a modified and recalibrated version of the Jordan-Gilbert potential energy surface. The thermal rate coefficients obtained between 200 and 2000 K are presented and compared with previous results for the same potential energy surface. Throughout the temperature range that is available for comparison, the RPMD approximation gives better agreement with accurate quantum mechanical (multiconfigurational time-dependent Hartree) calculations than do either the centroid density version of quantum transition state theory (QTST) or the quantum instanton (QI) model. The RPMD rate coefficients are within a factor of 2 of the exact quantum mechanical rate coefficients at temperatures in the deep tunneling regime. These results indicate that our previous assessment of the accuracy of the RPMD approximation for atom-diatom reactions remains valid for more complex polyatomic reactions. They also suggest that the sensitivity of the QTST and QI rate coefficients to the choice of the transition state dividing surface becomes more of an issue as the dimensionality of the reaction increases.  相似文献   

9.
An ab initio centroid molecular dynamics (CMD) method is developed by combining the CMD method with the ab initio molecular orbital method. The ab initio CMD method is applied to vibrational dynamics of diatomic molecules, H2 and HF. For the H2 molecule, the temperature dependence of the peak frequency of the vibrational spectral density is investigated. The results are compared with those obtained by the ab initio classical molecular dynamics method and exact quantum mechanical treatment. It is shown that the vibrational frequency obtained from the ab initio CMD approaches the exact first excitation frequency as the temperature lowers. For the HF molecule, the position autocorrelation function is also analyzed in detail. The present CMD method is shown to well reproduce the exact quantum result for the information on the vibrational properties of the system.  相似文献   

10.
The prototype tetra-atomic reaction F+H2O→HF+OH plays a significant role in both atmospheric and astronomical chemistry. In this work, thermal rate coefficients of this reaction are determined with the ring polymer molecular dynamics (RPMD) method on a full-dimensional potential energy surface (PES). This PES is the most accurate one for the title reaction, as demonstrated by the correct barrier height and reaction energy, compared to the benchmark calculations by the focal point analysis and the high accuracy extrapolated ab initio thermochemistry methods. The RPMD rate coefficients are in excellent agreement with those calculated by the semiclassical transition state theory and a two-dimensional master equation technique, and some experimental measurements. As has been found in many RPMD applications, quantum effects, including tunneling and zeropoint energy effects, can be efficiently and effectively captured by the RPMD method. In addition, the convergence of the results with respect to the number of beads is rapid, which is also consistent with previous RPMD applications.  相似文献   

11.
Several simple quantum correction factors for classical line shapes, connecting dipole autocorrelation functions to infrared spectra, are compared to exact quantum data in both the frequency and time domain. In addition, the performance of the centroid molecular dynamics approach to line shapes and time-correlation functions is compared to that of these a posteriori correction schemes. The focus is on a tunable model that is able to describe typical hydrogen bonding scenarios covering continuously phenomena from tunneling via low-barrier hydrogen bonds to centered hydrogen bonds with an emphasis on floppy modes and anharmonicities. For these classes of problems, the so-called "harmonic approximation" is found to perform best in most cases, being, however, outperformed by explicit centroid molecular dynamics calculations. In addition, a theoretical analysis of quantum correction factors is carried out within the framework of the fluctuation-dissipation theorem. It can be shown that the harmonic approximation not only restores the detailed balance condition like all other correction factors, but that it is the only one that also satisfies the fluctuation-dissipation theorem. Based on this analysis, it is proposed that quantum corrections of response functions in general should be based on the underlying Kubo-transformed correlation functions.  相似文献   

12.
The impact of quantum nuclear effects on hydrogen (H-) bond strength has been inferred in earlier work from bond lengths obtained from path integral molecular dynamics (PIMD) simulations. To obtain a direct quantitative assessment of such effects, we use constrained-centroid PIMD simulations to calculate the free energy changes upon breaking the H-bonds in dimers of HF and water. Comparing ab initio simulations performed using PIMD and classical nucleus molecular dynamics (MD), we find smaller dissociation free energies with the PIMD method. Specifically, at 50 K, the H-bond in (HF)(2) is about 30% weaker when quantum nuclear effects are included, while that in (H(2)O)(2) is about 15% weaker. In a complementary set of simulations, we compare unconstrained PIMD and classical nucleus MD simulations to assess the influence of quantum nuclei on the structures of these systems. We find increased heavy atom distances, indicating weakening of the H-bond consistent with that observed by direct calculation of the free energies of dissociation.  相似文献   

13.
14.
A new method, here called thermal Gaussian molecular dynamics (TGMD), for simulating the dynamics of quantum many-body systems has recently been introduced [I. Georgescu and V. A. Mandelshtam, Phys. Rev. B 82, 094305 (2010)]. As in the centroid molecular dynamics (CMD), in TGMD the N-body quantum system is mapped to an N-body classical system. The associated both effective Hamiltonian and effective force are computed within the variational Gaussian wave-packet approximation. The TGMD is exact for the high-temperature limit, accurate for short times, and preserves the quantum canonical distribution. For a harmonic potential and any form of operator A?, it provides exact time correlation functions C(AB)(t) at least for the case of B, a linear combination of the position, x, and momentum, p, operators. While conceptually similar to CMD and other quantum molecular dynamics approaches, the great advantage of TGMD is its computational efficiency. We introduce the many-body implementation and demonstrate it on the benchmark problem of calculating the velocity time auto-correlation function for liquid para-hydrogen, using a system of up to N = 2592 particles.  相似文献   

15.
We propose an approximate method for calculating Kubo-transformed real-time correlation functions involving position-dependent operators, based on path integral (Parrinello-Rahman) molecular dynamics. The method gives the exact quantum mechanical correlation function at time zero, exactly satisfies the quantum mechanical detailed balance condition, and for correlation functions of the form C(Ax)(t) and C(xB)(t) it gives the exact result for a harmonic potential. It also works reasonably well at short times for more general potentials and correlation functions, as we illustrate with some example calculations. The method provides a consistent improvement over purely classical molecular dynamics that is most apparent in the low-temperature regime.  相似文献   

16.
We have used the ring-polymer molecular dynamics method to calculate approximate Kubo-transformed velocity autocorrelation functions and self-diffusion coefficients for low-pressure liquid para-hydrogen at temperatures of 25 and 14 K. The resulting diffusion coefficients are shown to be consistent with experimental shear viscosities and the established finite-size relation D(L) approximately = D(infinity)-2.837k(B)T6pietaL, where k(B) is the Boltzmann constant, T the absolute temperature, eta the shear viscosity, and L the length of the (cubic) simulation cell. The diffusion coefficients D(L) obtained in simulations with finite system sizes are therefore too small. However, the extrapolation to infinite system size corrects this deficiency and leads to excellent agreement with experimental results. This both demonstrates the influence of system-size effects on quantum mechanical diffusion coefficients and provides further evidence that ring-polymer molecular dynamics is an accurate as well as practical way of including quantum effects in condensed phase molecular dynamics.  相似文献   

17.
The ring-polymer molecular dynamics (RPMD) was used to calculate the thermal rate coefficients and kinetic isotope effects of the heavy-light-heavy abstract reaction Cl+XCl\begin{document}$ \rightarrow $\end{document}XCl+Cl (X = H, D, Mu). For the Cl+HCl reaction, the excellent agreement between the RPMD and experimental values provides a strong proof for the accuracy of the RPMD theory. And the RPMD results are also consistent with results from other theoretical methods including improved-canonical-variational-theory and quantum dynamics. The most novel finding is that there is a double peak in Cl+MuCl reaction near the transition state, leaving a free energy well. It comes from the mode softening of the reaction system at the peak of the potential energy surface. Such an explicit free energy well suggests strongly there is an observable resonance. And for the Cl+DCl reaction, the RPMD rate coefficient again gives very accurate results compared with experimental values. The only exception is at the temperature of 312.5 K, results from RPMD and all other theoretical methods are close to each other but slightly lower than the experimental value, which indicates experimental or potential energy surface deficiency.  相似文献   

18.
The ring-polymer molecular dynamics (RPMD) was used to calculate the thermal rate coefficients of the multi-channel roaming reaction H+MgH→Mg+H2. Two reaction channels, tight and roaming, are explicitly considered. This is a pioneering attempt of exerting RPMD method to multi-channel reactions. With the help of a newly developed optimization-interpolation protocol for preparing the initial structures and adaptive protocol for choosing the force constants, we have successfully obtained the thermal rate coefficients. The results are consistent with those from other theoretical methods, such as variational transition state theory and quantum dynamics. Especially, RPMD results exhibit negative temperature dependence, which is similar to the results from variational transition state theory but different from the ones from ground state quantum dynamics calculations.  相似文献   

19.
The commensurate Frenkel Kontorova (FK) model is studied using path-integral molecular dynamics (PIMD). We focus on the highly discrete case, in which the embedding potential has a much greater maximum curvature than the harmonic potential connecting two particles in the FK chain. When efficient sampling methods are used, the dynamical interpretation of adiabatic PIMD appears to represent quite accurately the true time correlation functions of this highly correlated many-body system. We have found that the discrete, quantum FK model shows different behavior than its continuum version. The spectral density does not show the characteristic omega-2Theta(omega-omegac) cusp of the continuum solution in the pinned phase (m>m(c)). We also identify a dynamical quantum hysteresis in addition to the regular classical hysteresis when an external force is applied to the FK chain. In the unpinned phase (m相似文献   

20.
The influence of nuclear delocalisation on NMR chemical shifts in molecular organic solids is explored using path integral molecular dynamics (PIMD) and density functional theory calculations of shielding tensors. Nuclear quantum effects are shown to explain previously observed systematic deviations in correlations between calculated and experimental chemical shifts, with particularly large PIMD‐induced changes (up to 23 ppm) observed for carbon atoms in methyl groups. The PIMD approach also enables isotope substitution effects on chemical shifts and J couplings to be predicted in excellent agreement with experiment for both isolated molecules and molecular crystals. An approach based on convoluting calculated shielding or coupling surfaces with probability distributions of selected bond distances and valence angles obtained from PIMD simulations is used to calculate isotope effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号