首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Mononuclear copper(II) complexes of 1,2,4-triazole-based Schiff base macrocyclic hydrazones, III and IV, have been reported. The prepared amorphous complexes have been characterized by spectroscopic methods, electron spray ionization mass spectrometry, and elemental analysis data. Electrochemical studies of the complexes in DMSO show only one quasi-reversible reduction wave at +0.43 V (ΔE = 70 mV) and +0.42 V (ΔE = 310 mV) for III and IV, respectively, which is assigned to the Cu(II) → Cu(I) reduction process. Temperature dependence of magnetic susceptibilities of III and IV has been measured within an interval of 2–290 K. The values of χM at 290 K are 1.72 × 10?3 cm3 mol?1 and 1.71 × 10?3 for III and IV, respectively, which increases continuously upon cooling to 2 K. EPR spectra of III and IV in frozen DMSO and DMF were also reported. The trend g|| > g⊥ > ge suggests the presence of an unpaired electron in the dx2?y2 orbital of the Cu(II) in both complexes. Furthermore, spectral and antimicrobial properties of the prepared complexes were also investigated.  相似文献   

2.
The relations between the spin Hamiltonian (SH) parameters and crystal structure of Cr4+:α-Al2O3 crystals have been established. On the basis of this, the SH parameters including zero-field splitting parameter D and Zeeman g-factors (g|| and g) for Cr4+ ions in Cr4+:α-Al2O3 crystals, taking into account the spin–spin (SS), spin-other-orbit (SOO) and orbit–orbit (OO) magnetic interactions in addition to the spin–orbit (SO) magnetic interaction, are theoretically investigated using complete diagonalization method (CDM). The theoretical results are in excellent agreement with the experimental ones when the upper three O2? ions rotate 0.94° toward [1 1 1] axis and the lower three O2? ions rotate 0.92° toward it. Hence, the local structure distortion effect plays an important role in explaining the spectroscopic properties of Cr4+ ions in Cr4+:α-Al2O3 crystals. This study shows that for Cr4+:α-Al2O3 the contributions arising from SS, SOO, and OO interactions to the zero-field splitting (ZFS) parameter D are appreciable, whereas those to g|| and g are quite small.  相似文献   

3.
Some new photorefractive polymers containing indole groups were synthesized and characterized by IR, 1H NMR, and UV techniques. The Gibbs free energy changes (ΔG) of corresponding reactions were predicted by density functional theory to be 4.19 and ?9.71 kcal mol?1 for –H, and 4.12 and ?11.93 kcal mol?1 for –OCH3, respectively. The glass transition temperature (T g) of the polymers were about 96–111 °C. The nonlinear second-order optical susceptibility was predicted to be 2.84 × 10?30 and 1.04 × 10?30 esu by theoretical quantum calculations.  相似文献   

4.
Thermal degradation of hydroxypropyl trimethyl ammonium chloride chitosan–Cd complexes (HTCC–Cd) was investigated by thermogravimetric analysis. The results indicate that the degradation of HTCC–Cd in nitrogen atmosphere was two-step reaction. For the first step of degradation, the initial temperature of mass loss (T 0), the final temperature of mass loss (T f), and the temperature of maximum mass loss (T p) increase linearly with the rising of heating rate (B). T o = 1.241B + 220.3, T p = 1.111B + 245.8, and T f = 1.335B + 358.2. Using different methods, the kinetic parameters of the two steps were investigated. The results show that the activation energies of the first step of degradation obtained using Friedman and Flynn–Wall–Ozawa methods are 1.684 × 105 and 1.646 × 105 J mol?1, and the corresponding activation energies for the second step are 1.165 × 105 J mol?1 and 1.373 × 105 kJ mol?1. The results obtained from Phadnis–Deshpande methods indicate that the two degradation processes are both nucleation and growth process, and follow A4 mechanism with intergral form g(X) = [?ln(1 ? X)]4.  相似文献   

5.
Using the 1 : 2 condensate of benzil and 2-hydrazinopyridine as the ligand LH2 (H: dissociable NH proton), the red complex Cu(LH2)(ClO4)2 (1) was synthesized. The ligand also afforded the orange [Zn(LH2)(OH2)2](ClO4)2 (2). The X-ray crystal structures of the ligand, 1 and 2 have been determined. The metals in 1 and 2 have octahedral N4O2 environments. 1 is paramagnetic with μeff of one unpaired electron (1.63 μB and displays an axial EPR spectrum in the solid state with <g> = 2.07, characteristic of a (dx2?y2)1 ground state (g|| > g; A|| = 16 mT). In cyclic voltammetry, 1 displays a two-electron oxidation around 0.9 V versus NHE. The two-electron oxidized (coulometrically) solution of 1 (golden yellow) gives an EPR spectrum with <g> = 2.17 and g|| < g. The reaction of PPh3 with 1 yields the orange complex [Cu(LH2)(PPh3)](ClO4)2 (4). With the assumed chemical formula, the effective magnetization of 4 corresponds to one electron. Its EPR spectrum in the solid state is isotropic with g = 2.07. This g value yields a theoretical μeff of 1.80 μB at 298 K from Curie’s law, which matches very well with the experimental value of 1.89 μB at room temperature. Since single crystals of 4 could not be obtained, DFT calculations at the UBP86/6–311G(2d,p) level have been carried out and indicate that the cation in 4 is square pyramidal with the phosphine at the apex. The ease of the oxidation of the metal in 1 leads to the stabilization of the rare Cu(II)-P bond in 4.  相似文献   

6.
The possibility of using ionic liquid based chitosan sorbent for the separation and preconcentration of fluoroquinolone antibiotics (marbofloxacin, enoxacin, ofloxacin, ciprofloxacin, and enrofloxacin) has been studied. For this reason, different ionic liquids were prepared and coated on the chitosan sorbent. The conditions of the preconcentration of fluoroquinolones on a microcolumn have been optimized and the extraction efficiencies of the prepared sorbents have been compared. The compounds were eluted with 5 mL of 20% NH3 (v/v, MeOH) solution and determined by HPLC with diode array and fluorescence detector. The limits of detection were found as 4.23 µ g L?1 for marbofloxacin, and 1.09 µg L?1 for enoxacin; 3.23 × 10?3 µg L?1 for ofloxacin; 8.39 × 10?3 µg L?1 for ciprofloxacin; and 19.50 × 10?3 µg L?1 for enrofloxacin. The developed method was applied for the analysis of fluoroquinolone in milk, egg, fish, bovine, and chicken samples and the recoveries were obtained in the range 70–100%.  相似文献   

7.
The graphene anode was investigated in an ionic liquid electrolyte (0.7 M lithium bis(trifluoromethanesulfonyl)imide (LiNTf2)) in room temperature ionic liquid (N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPyrNTf2)). SEM and TEM images suggested that the electrochemical intercalation/deintercalation process in the ionic liquid electrolyte without vinylene carbonate (VC) leads to small changes on the surface of graphene particles. However, a similar process in the presence of VC results in the formation of a coating (SEI—solid electrolyte interface) on the graphene surface. During charging/discharging tests, the graphene electrode working together with the 0.7 M LiNTf2 in MPPyrNTf2 electrolyte lost its capacity, during cycling and stabilizes at ca. 200 mAh g?1 after 20 cycles. The addition of VC to the electrolyte (0.7 M LiNTf2 in MPPyrNTf2?+?10 wt.% VC) considerably increases the anode capacity. Electrodes were tested at different current regimes: ranging between 50 and 1,000 mA g?1. The capacity of the anode, working at a low current regime of 50 mA g?1, was ca. 1,250 mAh g?1, while the current of 500 mA g?1 resulted in capacity of 350 mAh g?1. Coulombic efficiency was stable and close to 95 % during ca. 250 cycles. The exchange current density, obtained from impedance spectroscopy, was 1.3?×?10?7 A cm?2 (at 298 K). The effect of the anode capacity decrease with increasing current rate was interpreted as the result of kinetic limits of the electrode operation.  相似文献   

8.
The effect of stereoregularity, in terms of isotactic triad content on the thermal behavior of carbon fiber precursor polymers synthesized through different polymerization routes such as solid state and radical solution polymerization techniques, was investigated by the thermogravimetric analysis and differential scanning calorimetric measurements. The isotactic contents of I-PAN and A-PAN were estimated with 13C NMR. The thermal cyclization reactions of atactic polyacrylonitrile (A-PAN) with low isotactic content (26.4–29.7 %) occurred at a lower temperature than that of isotactic polyacrylonitrile (I-PAN) with higher content (48.7–51.6 %). The percentage of mass loss observed in I-PAN was less as compared to A-PAN. The molecular mass characteristics of PAN obtained through solid state and radical solution polymerization were [M n (10.2–14.3 × 104), M v (2.44–3.26 × 105)] and [M n (10.2–14.3 × 104), M v (2.29–2.74 × 105)] Daltons (Da).  相似文献   

9.
This paper focus on the effect of nanosize (<50 nm BET) inorganic alumina (Al2O3) filler on the structural, conductivity, and thermal properties of chitosan‐based polymer electrolytes. Films of chitosan and its complexes were prepared using solution‐casting technique. Different amounts of Al2O3 viz., 3, 4.5, 6, 7.5, 9, 12, and 15 wt% were added to the highest room temperature conducting sample in the chitosan–salt system, i.e. sample containing 60 wt% chitosan–40 wt% NH4SCN. The conductivity value of the sample is 1.29 × 10?4 S cm?1. On addition of 6 wt% Al2O3 filler the ionic conductivity increased to 5.86 × 10?4 S cm?1. The amide and amino peaks in the spectrum of chitosan at 1636 and 1551 cm?1, respectively, shift to lower wavenumbers on addition of salt. The glass transition temperature Tg for the highest conducting composite is 190°C. The increase in Tg with increase in more than 6 wt% filler content is attributed to the increase in degree of crystallinity as proven from X‐ray diffraction studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The binary systems of iron(II) and iron(III) with 2-pyridineformamide thiosemicarbazone (H2Am4DH) and its N(4)-methyl (H2Am4Me), N(4)-ethyl (H2Am4Et) and N(4)-phenyl (H2Am4Ph) derivatives were studied in aqueous solution by pH-potentiometry, ultraviolet–visible spectroscopy and EPR spectra. The formation constants of the iron(II) and iron(III) complexes were calculated from potentiometric and electronic absorption data at 25 °C and ionic strength μ = 0.1 mol·L?1 using the HYPERQUAD program. The values of the formation constant of the FeL species decrease in the order Fe:H2Am4DH > Fe:H2Am4Me ≈ Fe:H2Am4Et > Fe:H2Am4Ph in the same way as the basicity of the ligands. The species distribution diagrams show that the species FeL2 predominates at physiological pH in the Fe:H2Am4DH, Fe:H2Am4Me and Fe:H2Am4Et systems. The similar EPR spectra of these iron(III) binary systems indicate the same coordination spheres around the metallic center and the EPR g values suggests that the unpaired electron is in the dxy orbital, indicating a d xz 2 d yz 2 d xy 1 ground state configuration for the complexes. For the Fe(III):H2Am4Ph system the EPR results indicated dimerization and antiferromagnetic interaction due to the presence of only one thiosemicarbazone ligand around the metallic center.  相似文献   

11.
Electrical conductivity and percentage linear thermal expansion of the borosilicate glass (BSG) and simulated waste-loaded borosilicate glass (BSGW) were measured in the temperature range of 300–780 K and compared. Pronounced increase in electrical conductivity was observed around glass transition temperature (T g) of BSG and BSGW. The activation energy (E a) of electrical conduction determined from the measured data for BSG and BSGW is 0.961 ± 0.005 and 0.960 ± 0.005 eV, respectively. The % average linear thermal expansion of BSGW showed a slight decreasing trend compared with pristine BSG. The average coefficient of thermal expansion determined from dilatometry data is 12.87 ± 0.24 × 10?6 and 11.94 ± 0.23 × 10?6 K?1 for BSG and BSGW, respectively. The T g measured by dilatometry is 806 ± 24 K for BSG and 790 ± 23 K for BSGW, respectively. The T g measured by DTA was found to be 820 ± 7 and 805 ± 5 K for BSG and BSGW, respectively, for heating cycle. The T g values obtained from DSC measurements are 805 ± 5 and 803 ± 5 K for BSG and BSGW, respectively. The T g of BSGW showed a slight decrease compared with that of BSG. The values obtained by DSC examination also showed the lowering of T g values for the waste-loaded composition. The lowering of T g may be attributed to the interaction of glass-forming agents and simulated waste elements.  相似文献   

12.
A composite of aminosilane-grafted TiO2 (TA) and graphene oxide (GO) was prepared via a hydrothermal process. The TiO2/graphene oxide-based (TA/GO) anode was investigated in an ionic liquid electrolyte (0.7 M lithium bis(trifluoromethanesulfonyl)imide (LiNTf2)) in ionic liquid (N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPyrNTf2)) at room temperature and in sulfolane (1 M lithium hexafluorophosphate (LiPF6) in tetramethylene sulfolane (TMS)). Scanning and transmission electron microscopy (SEM and TEM) observations of the anode materials suggested that the electrochemical intercalation/deintercalation process in the ionic liquid electrolyte with vinylene carbonate (VC) leads to small changes on the surface of TA/GO particles. The addition of VC to the electrolyte (0.7 M LiNTf2 in MPPyrNTf2 + 10 wt.% VC) considerably increases the anode capacity. Electrodes were tested at different current regimes in the range 5–50 mA g?1. The capacity of the anode, working at a low current regime of 5 mA g?1, was ca. 245 mA g?1, while a current of 50 mA g?1 resulted in a capacity of 170 mA g?1. The decrease in anode capacity with increasing current rate was interpreted as the result of kinetic limits of electrode operation. A much lower capacity was observed for the system TA/GO│1 M LiPF6 in TMS + 10 wt.% VC│Li.  相似文献   

13.
Heavy metal oxide glasses doped with 2d transition metal niobium were casted through normal melt-quench technique in the formula composition (100?x) [3Bi2O3–7GeO2 (BGO70)]?xNb2O5 where 5 ≤ x ≤ 25. Experimentally measured values of density d exp were 6.737–7.149 g/cc ± 0.06 %. Corresponding molar volume V m exp had values 29.677–31.550 cc ± 0.04 %, V pyc varied 32.28–34.71 cc ± 0.03 % and oxygen molar volume $ V_{{{\text{mO}}^{2-} }} $ increased linearly from 17.761 to 20.467 cc ± 0.06 %. Thermal coefficient of linear expansion was between 5.316 ± 0.001 × 10?6 and 8.033 ± 0.001 × 10?6 K?1. Glass transition temperature T g, onset of crystallization temperature T x, and the stability factor ΔT were noted from DTA curves. Direct allowed energy gap E g was between 1.809–2.988 eV and Urbach energy had value 0.32–1.49 eV. Maximum transmission efficiency was 74 % for glass BGO70-Nb10. FTIR spectra revealed that lattice vibration modes were active in 400–1,300 cm?1 range. A modifying behavior was assigned to Nb5+ ion in the system.  相似文献   

14.

This study has concerned the development of polymer composite electrolytes based on poly(vinyl butyral) (PVB) reinforced with calcinated Li/titania (CLT) for use as an electrolyte in electrochemical devices. The primary aim of this work was to verify our concept of applying CLT-based fillers in a form of nano-backbone to enhance the performance of a solid electrolyte system. To introduce the network of CLT into the PVB matrix, gelatin was used as a sacrificial polymer matrix for the implementation of in situ sol–gel reactions. The gelatin/Li/titania nanofiber films with various lithium perchlorate (LiClO4) and titanium isopropoxide proportions were initially fabricated via electrospinning, and ionic conductivities of electrospun nanofibers were then examined at 25 °C. In this regard, the highest ionic conductivity of 2.55 × 10−6 S/cm was achieved when 10 wt% and 7.5 wt% loadings of LiClO4 and titania precursor were used, respectively. The nanofiber film was then calcined at 400 °C to remove gelatin, and the obtained CLT film was then re-dispersed in solvated PVB-lithium bis(trifluoromethanesulfonyl)imide (PVB-LiTFSI) solution before casting to obtain reinforced composite solid electrolyte film. The reinforced composite PVB polymer electrolyte film shows high ionic conductivity of 2.22 × 10−4 S/cm with a wider electrochemical stability window in comparison to the one without nanofillers.

  相似文献   

15.
Comprehensive investigations have been performed by EPR and optical spectroscopy for Bi3GeO4 crystals doped with chromium ions. It is demonstrated that the known optical absorption spectrum for chromium ions, specifically, the triplet in the region 600–900 nm has an analog in the EPR spectra — the center with electron spin S = 1. The spectrum is described by the spin-Hamiltonian with the parameters D = 550 G, E = 10 G, g xx = g yy = 1.915, g zz = 1.932. The EPR spectrum is dictated by Cr4+ incorporation at the germanium sites. Luminescence observed in the region 1.2–1.7 μm is also caused by transitions of Cr4+ with tetrahedral surroundings to germanium sites. Original Russian Text Copyright ? 2005 N. V. Chernei, V. A. Nadolinnyi, N. V. Ivannikova, V. A. Gusev, I. N. Kupriyanov, V. N. Shlegel, and Ya. V. Vasiliev __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 46, No. 3, pp. 444–450, May–June, 2005.  相似文献   

16.
The present investigation deals with electrochemical double layer capacitors (EDLCs) made up of ionic liquid (IL)-based gel polymer electrolytes with chemically treated activated charcoal electrodes. The gel polymer electrolyte comprising of poly(vinylidine fluoride-co-hexafluropropylene) (PVdF-HFP)–1-ethyl-2,3-dimethyl-imidazolium-tetrafluroborate [EDiMIM][BF4]–propylene carbonate (PC)–magnesium perchlorate (Mg(ClO4)2) exhibits the highest ionic conductivity of ~8.4?×?10?3?S?cm?1 at room temperature (~20 °C), showing good mechanical and dimensional stability, suitable for their application in EDLCs. Activation of charcoal was done by impregnation method using potassium hydroxide (KOH) as activating agent. Brunauer–Emmett–Teller (BET) studies reveal that the effective surface area of treated activated charcoal powder (1,515 m2?g?1) increases by more than double-fold compared to the untreated one (721 m2?g?1). Performance of EDLCs has been tested using cyclic voltammetry, impedance spectroscopy, and charge–discharge techniques. Analysis shows that chemically treated activated charcoal electrodes have almost triple times more capacitance values as compared to the untreated one.  相似文献   

17.
New complexes ML(CNS)·nH2O [M = Ni, n = 0.5; M = Cu, n = 4.5; M = Zn, n = 0.5, HL: 6-mercapto-(1,4,8,11-tetraazaundecanyl)-6-carboxylic acid)] have been synthesised, chemical analysed, and characterised by different spectroscopic techniques (IR, UV–Vis–NIR, 1H NMR, EPR, ESI–MS), and magnetic measurements. Based on the IR spectra a dinuclear structure with the 1,3-CSN coordination was proposed for Ni(II) and Cu(II) complexes. The dinuclear structure of Cu(II) complex is also consistent with both magnetic behaviour and EPR spectrum. According to TG, DTG and DTA curves the thermal transformations are complex processes, including dehydration, Mannich base oxidative degradation and thiocyanate decomposition. The final product of decomposition is the most stable metallic oxide, as XRD data indicates. The new complexes were also screened for their microbicidal and antibiofilm properties.  相似文献   

18.
New species of type [MLCl2nH2O (M:Ni, n = 0; M:Cu, n = 1 and M:Zn, n = 0; L: 1,3,5,8,11-pentaazacyclotridecane-3-yl-(pyrid-3-yl)-methanone resulted by N,N’-bis(2-aminoethyl)ethane-1,2-diamine, nicotinamide and formaldehyde) were synthesised by one-pot condensation. Chemical analysis, ESI–MS, IR, 1H NMR, 13C NMR, UV–Vis–NIR, EPR spectroscopy as well as magnetic data at room temperature were used in order to characterise the compounds. The data provided by IR, ESI–MS and NMR spectra are consistent with the macrocycle formation. Electronic spectra indicate that both Ni(II) and Cu(II) adopt an octahedral stereochemistry data furthermore confirmed by magnetic moments and EPR spectrum at room temperature. The electrochemical behaviour of the compounds was investigated by cyclic voltammetry. Processes as water and chloride elimination as well as oxidative degradation of the macrocyclic ligand were observed by simultaneously TG–DTA measurements. The final residue as the most stable metallic oxide was identified by X-ray powder diffraction. The compound [CuLCl2]·H2O (2) exhibits fungicidal and anti-biofilm activity on Candida albicans strains. The complexes exhibit a low cytotoxicity on HEp 2 cells, except for Cu(II) species that induce the cellular cycle arrest in the G2/M phase.  相似文献   

19.
This study proposes, verifies, and refines the use of biopolymers treated with two new ionic liquids (ILs) (sec-butylammonium acetate and n-octylammonium acetate), as a platform for chromium adsorption. The ILs were synthesized, characterized, and applied to chitosan treatment. Analyzing the size distribution of microparticles of chitosan and chitosan activated with ILs (sec-butylammonium acetate and n-octylammonium acetate), we observed that a little decrease in the particle size occurred with the activation of chitosan (176 ± 0.02 μm to 167 ± 0.054 and 168.5 ± 0.05 μm, respectively), as well as changes in the X-ray diffraction FTIR_ATR spectra. Further studies were performed using the best adsorbent – chitosan treated with sec-butylammonium acetate. In this case, the chromium VI concentration in the sample was reduced by more than 99% when using chitosan treated with IL sec-butylammonium acetate. The best reaction time was determined as 1 h, which allowed a chromium adsorption of 99.1% and the adsorption kinetic data were best represented by the second-order model (k2 = 11.7258 g mg?1 min?1). The maximum adsorption capacity was obtained using the Langmuir isotherm model (20.833 mg g?1 at pH 4 during 1 h, using 1.0 g of chitosan), and the adsorption efficiency was enhanced at 25 °C by the Freundlich isotherm model, in which the constants KF and n were determined as 0.875 mg L?1 and 1.610, respectively.  相似文献   

20.
Anhydrous conductive membranes composing of a composite of chitosan (CS) and ionic liquids with symmetrical carboxyl groups were explored. Scanning electron microscope images revealed that porous composite membranes could be obtained by combining CS with different amounts of 1,4‐bis(3‐carboxymethyl‐imidazolium)‐1‐yl butane chloride ([CBIm]Cl). Fourier transform infrared and proton nuclear magnetic resonance confirmed that the formation of ammonium salts after CS was combined with [CBIm]Cl. The thermal property of CS–ionic liquid composite membranes was studied through thermogravimetric analysis. The anhydrous ionic conductivities of CS–[CBIm]X (X = Cl, Ac, BF4, and I) composite membranes were measured using ac impedance spectroscopy at room temperature in N2 atmosphere. The conductivities (0.4–0.7 × 10?4 Scm?1), found to be in the same range as semiconductors, were significantly higher than those of pure CS membrane (<10?8 Scm?1). In addition, the anhydrous conductivity of composite membrane based on CS–[CBIm]I at room temperature reached a level as high as 0.91 × 10?2 Scm?1 when iodine was doped. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号