首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
UV irradiation results in DNA damage, inflammation and immunosuppression, leading to the development of basal and squamous cell carcinomas. Earlier data show that topical treatment with nondenatured soy extracts reduced the incidence and delayed the development/progression of already-initiated skin tumors in high-risk hairless mice. Here we show that pretreatment with nondenatured soy extracts reduced UVB-induced Thymine-Thymine (TT) dimer formation. In vitro, nondenatured soy extracts enhanced UVB-induced checkpoint kinase-1 (Chk1) activation, suggesting a delay in cell cycle progression that enables longer time for DNA repair. Soy also reduced UVB-induced cyclo-oxygenase-2 (COX-2) expression and prostaglandin E2 secretion, and inhibited p38 MAP kinase activation, suggesting its anti-inflammatory activity. Mice pretreated topically with nondenatured soy extracts had reduced levels of UVB-induced TT dimers and COX-2 expression in their skins compared to UVB alone. The nondenatured soy extracts also inhibited vascular endothelial growth factor-induced endothelial tube formation in Matrigel, suggesting a possible inhibitory effect on angiogenesis and tumor progression. Taken together, nondenatured soy extracts could prevent or reduce UVB-induced skin damage via multiple mechanisms, affecting both the initiation and the progression of skin cancer. These data suggest that topical application of nondenatured soy extracts could potentially reduce the incidence of skin cancer.  相似文献   

2.
Identification of natural products capable of affording protection against UVB radiation-induced inflammatory responses and generation of oxidative stress may have important human health implications. The UVB exposure-induced skin injury and oxidative stress has been associated with a variety of skin disease conditions including photoaging, inflammation and cancer. Tea is a popular beverage consumed worldwide. In several mouse skin models, topical application as well as oral consumption of green tea has been shown to afford protection against chemical and UVB-induced carcinogenesis and inflammatory responses. In the present study, we investigated in human skin, whether topical application of (-)-epigallocatechin-3-gallate (EGCG), the major polyphenolic constituent in green tea, inhibits UVB-induced infiltration of leukocytes (macrophage/neutrophils), a potential source of generation of reactive oxygen species (ROS), and generation of prostaglandin (PG) metabolites. Human subjects were UVB irradiated on sun-protected skin to four times their minimal erythema dosage (MED) and skin biopsies or keratomes were obtained either 24 h or 48 h later. We found that topical application of EGCG (3 mg/2.5 cm2) before UVB (4 MED) exposure to human skin significantly blocked UVB-induced infiltration of leukocytes and reduced myeloperoxidase activity. These infiltrating leukocytes are considered to be the major source of generation of ROS. In the same set of experiments we found that topical application of EGCG before UVB exposure decreased UVB-induced erythema. In additional experiments, we found that microsomes from EGCG pretreated human skin and exposed to UVB, compared to UVB exposure alone, produced significantly reduced PG metabolites, particularly PGE2. The PG metabolites play a critical role in free radical generation and skin tumor promotion in multistage skin carcinogenesis. Careful microscopic examination of skin sections, stained with hematoxylin and eosin, under higher magnification (x400) also revealed that EGCG pretreated and UVB-exposed human skin contained fewer dead cells in the epidermis with comparison to nonpretreated UVB-exposed skin. Taken together, our data demonstrate that EGCG has the potential to block the UVB-induced infiltration of leukocytes and the subsequent generation of ROS in human skin. This may explain the possible mechanism involved in anti-inflammatory effects of green tea. We suggest that EGCG may be useful as a topical agent for protection against UVB-induced ROS-associated inflammatory dermatoses, photoaging and photocarcinogenesis. Further studies are warranted in this direction.  相似文献   

3.
Oxidative stress and inflammatory tissue damage are two major events frequently implicated in carcinogenesis. Numerous polyphenolic compounds derived from plants possess antioxidant and anti-inflammatory activities and are hence effective in preventing cancer. Oligonol is a polyphenol formulation enriched with catechin-type oligomers. As an initial approach to assess the chemopreventive potential of oligonol, we have determined its effects on inflammatory as well as oxidative damage in mouse skin irradiated with UVB. Topical application of oligonol onto the dorsal skin of male HR-1 hairless mice 30 min prior to UVB exposure diminished epidermal hyperplasia and formation of 4-hydroxynonenal, a biochemical hallmark of lipid peroxidation. Topical application of oligonol also significantly inhibited UVB-induced cyclooxygenase (COX-2) expression in mouse skin. Oligonol diminished the DNA binding of activator protein-1 (AP-1) and CCAAT/enhancer binding protein (C/EBP), and the expression of C/EBPdelta in mouse skin exposed to UVB. Our study also revealed that oligonol attenuated UVB-induced catalytic activity as well as expression of p38 mitogen-activated protein (MAP) kinase. Moreover, UVB-induced phosphorylation of another upstream kinase Akt was attenuated by oligonol. Taken together, oligonol showed antioxidative and anti-inflammatory effects in UVB-irradiated mouse skin by inhibiting COX-2 expression via blockade of the activation of AP-1 and C/EBP, and upstream kinases including p38 MAP kinase and Akt.  相似文献   

4.
The incidence of skin cancer is increasing rapidly, particularly in the Caucasian population. Epidemiological and experimental studies demonstrated that ultraviolet radiation (UVR) is the primary cause for the increasing incidence of skin cancer. It is well known that UV irradiation induces DNA damage. If the damage is not repaired or removed in time, it can lead to mutations and skin carcinogenesis. N-acetylcysteine (NAC) has been shown to be an effective protector against UVB-induced immunosuppression and to modulate the expression of some oncogenes and tumor suppressor genes. To test further the protective effect of NAC against UVR, we used both in vitro and in vivo models to investigate the effect of NAC on UVB-induced apoptosis and repair of DNA damage in human and mouse keratinocytes. Our data indicate that the intracellular glutathione level was increased after treatment with NAC at 10-20 mM but decreased with 40 mM NAC treatment due to the toxicity. At concentrations up to 20 mM NAC did not have a significant effect on UVB-induced apoptosis of cultured human keratinocytes. In addition, in an in vivo mouse model, topical application of NAC (3 mumol cm-2) that has been shown to inhibit UVB-induced immunosuppression did not have any effect on UVB-induced apoptosis and did not reduce the formation or enhance the repair of UVB-induced cyclobutane pyrimidine dimers and (6-4) photoproducts. Our results indicate that NAC is ineffective in preserving the genomic stability of keratinocytes against UVB irradiation.  相似文献   

5.
Oral administration of green tea or caffeine to SKH-1 mice during UVB irradiation for several months inhibited the formation of skin cancer. Similar effects were observed when green tea or caffeine was given to tumor-free UVB-initiated mice with a high risk of developing skin tumors in the absence of further UVB irradiation (high risk mice). Mechanistic studies indicated that topical application of caffeine stimulated UVB-induced apoptosis as well as apoptosis in UVB-induced focal hyperplasia and tumors in tumor-bearing mice. Oral or topical administration of caffeine enhanced the removal of patches of epidermal cells with a mutant form of p53 protein that appeared early during the course of UVB-induced carcinogenesis, and oral administration of caffeine altered the profile of p53 mutations in the patches. In additional studies, topical application of caffeine was shown to have a sunscreen effect, and topical application of caffeine sodium benzoate was more active than caffeine as a sunscreen and for stimulating UVB-induced apoptosis. Caffeine sodium benzoate was also highly active in inhibiting carcinogenesis in UVB-pretreated high risk mice. Our studies indicate that caffeine and caffeine sodium benzoate may be useful as novel inhibitors of sunlight-induced skin cancer.  相似文献   

6.
This study was conducted to assess protective effect of an antioxidant protein, sericin, on UVB-induced acute damage and tumor promotion in mouse skin. In experiment 1, HR-1 hairless mice were treated with 180 mJ/cm2 of ultraviolet B light (UVB) once daily for 1 and 7 days. The treatment for 7 days caused red sunburn lesions of the skin. The intensity of red color and area of these lesions were inhibited by the topical application of sericin at the dose of 5 mg after UVB treatment. Immunohistochemical analyses showed that the application of sericin significantly suppressed UVB-induced elevations in 4-hydroxynonenal (4-HNE), expression of cyclooxygenase-2 (COX-2) protein, and proliferating cell nuclear antigen (PCNA)-labeling index in the UVB-exposed epidermis. In experiment 2, HR-1 hairless mice were treated with 200 nmol of 7,12-dimethylbenz [alpha] anthracene (DMBA) followed 1 week later by irradiation with 180 mJ/ cm2 of UVB twice weekly for 22 weeks. The protective effect of sericin was evident in terms of significant reduction in tumor incidence and tumor multiplicity at the dose of 5 mg. The results suggest that sericin possesses photoprotective effect against UVB-induced acute damage and tumor promotion by reducing oxidative stress, COX-2 and cell proliferation in mouse skin.  相似文献   

7.
Ultraviolet (UV) radiation is a major cause of skin photoaging through generating excessive oxidative stress and inflammation. One of the strategies is to use photo-chemoprotectors, such as natural products with antioxidant and anti-inflammatory properties, to protect the skin from photo damage. The present study investigates the photoprotective potentials of topical administration of unhydrolyzed collagen, epigallocatechin gallate (EGCG), and their combination against ultraviolet B (UVB)-induced photoaging in nude mice. It is found that both the solo and combined pretreatments could recover UVB-induced depletion of antioxidative enzymes, including superoxide dismutase and glutathione peroxidase (GSH-Px), as well as an increase of lipid peroxide malondialdehyde and inflammatory tumor necrosis factor-α. Meanwhile, the UVB-stimulated skin collagen degradation is attenuated significantly with drug treatments, which is evidenced by expression analysis of matrix metalloproteinase-1 and hydroxyproline. Additionally, the mouse skin histology shows that the drug-pretreated groups possess decreased epidermis thickness and normal collagen fiber structure of the dermis layer. These results demonstrate that both EGCG and collagen can protect the skin against UVB-induced skin photoaging. Synergistically, the combination of them shows the maximum prevention to skin damage, showing its potential in the application of anti-photoaging formulation products.  相似文献   

8.
Green tea polyphenols: DNA photodamage and photoimmunology.   总被引:4,自引:0,他引:4  
Green tea is a popular beverage consumed worldwide. The epicatechin derivatives, which are commonly called 'polyphenols', are the active ingredients in green tea and possess antioxidant, anti-inflammatory and anti-carcinogenic properties. Studies conducted by our group on human skin have demonstrated that green tea polyphenols (GTP) prevent ultraviolet (UV)-B-induced cyclobutane pyrimidine dimers (CPD), which are considered to be mediators of UVB-induced immune suppression and skin cancer induction. GTP treated human skin prevented penetration of UV radiation, which was demonstrated by the absence of immunostaining for CPD in the reticular dermis. The topical application of GTP or its most potent chemopreventive constituent (-)-epigallocatechin-3-gallate (EGCG) prior to exposure to UVB protects against UVB-induced local as well as systemic immune suppression in laboratory animals. Additionally, studies have shown that EGCG treatment of mouse skin inhibits UVB-induced infiltration of CD11b+ cells. CD11b is a cell surface marker for activated macrophages and neutrophils, which are associated with induction of UVB-induced suppression of contact hypersensitivity responses. EGCG treatment also results in reduction of the UVB-induced immunoregulatory cytokine interleukin (IL)-10 in skin as well as in draining lymph nodes, and an elevated amount of IL-12 in draining lymph nodes. These in vivo observations suggest that GTPs are photoprotective, and can be used as pharmacological agents for the prevention of solar UVB light-induced skin disorders associated with immune suppression and DNA damage.  相似文献   

9.
Oxidative DNA damage has been implicated in some of the biological properties of UVA but so far not in the acute photosensitivity or cellular sensitivity. In contrast to pyrimidine dimers, oxidative DNA damage is predominantly processed by base excision repair (BER). In order to further clarify the role of oxidative DNA damage and its repair in the acute cellular response to UV light, we studied UVA1 and UVB sensitivities in three different cell model systems with modified BER. 8-Oxoguanine-DNA-glycosylase 1-/- (OGG1-/-) mouse embryonal fibroblasts and human fibroblasts in which BER was inhibited by incubation with methoxyamine were hypersensitive to UVA1, in particular to low doses. This hypersensitivity could be partially corrected by reexpression of OGG1 in OGG1-/- cells. The Chinese hamster ovary (CHO) cells with upregulated AP-endonuclease 1 exhibited reduced UVA1 sensitivity. UVB sensitivity was not altered in any of the cell models. These results indicate that DNA damage, in particular oxidative DNA damage, contributes to cellular UVA1 sensitivity and underline a pivotal role of its repair in the cellular responses to UVA1.  相似文献   

10.
8-oxo-deoxyguanosine (8-oxo-dG) is a major oxidative lesion in DNA and is responsible for mutation and cancer. Current techniques for detecting 8-oxo-dG are indirect methods. Thus, development of new methodologies is needed to directly detect such oxidative lesions. In this article, we have used ultraviolet resonance Raman (UVRR) spectroscopy as a novel analytical technique for the detection of 8-oxo-dG. Here, the UVRR spectrum of 8-oxo-dG was acquired and compared to that of deoxyguanosine (dG) and deoxyadenosine (dA). Data analysis shows a distinct UVRR spectrum of 8-oxo-dG with characteristic peaks. Detection of 8-oxo-dG was easily achieved from a mixture with dG. These results reveal that UVRR spectroscopy shows promise as a direct method for detecting 8-oxo-dG.  相似文献   

11.
Bcl-2 is a member of the large Bcl-2 family and protects cells from apoptosis. Ultraviolet B (UVB) irradiation induces apoptosis of keratinocytes that is known as "sunburn cells." Previously we reported that UVB irradiation induces apoptosis accompanied by sequential activation of caspase 8, 3 and 1 in keratinocytes, and that the process is inhibited by various caspase inhibitors. Using bcl-2-expressing adenovirus vector we investigated the effect of Bcl-2 on UVB-induced apoptosis. Adenovirus vector efficiently introduced bcl-2 gene in cultured normal mouse keratinocytes (NMK cells); almost all NMK cells (1 x 10(6)) were transfected at 1 x 10(8) plaque-forming unit (PFU)/mL. Bcl-2-transfected NMK cells were significantly resistant to UVB-induced apoptosis with the suppressive effect dependent on the Bcl-2 expression level. Following UVB irradiation caspase 8, 3 and 9 activities were stimulated in NMK cells, whereas in bcl-2-transfected cells only caspase 8, but not caspase 3 or 9, activity was stimulated. In order to investigate the effect of Bcl-2 in vivo topical application of Ad-bcl-2 on tape-stripped mouse skin was performed. Following the application Bcl-2 was efficiently overexpressed in almost all viable keratinocytes. The expression was transient with the maximal expression of Bcl-2 on the first day following the application of 1 x 10(9) PFU in 200 microL. The introduced Bcl-2 remained at least for 6 days. UVB irradiation (1250 J/m2) induced apoptosis within 12 h and the maximal effect was observed at 24 h in control mouse skin. Both bcl-2-transfected and topical caspase 3 inhibitor-treated mice skin were resistant to UVB-induced apoptosis. The suppressive effect of Bcl-2 was more potent than that of caspase 3 inhibitor application. Topical application of empty adenovirus vector alone had no effect on Bcl-2 expression or UVB-induced apoptosis. These results indicate that adenovirus vector is an efficient gene delivery system into keratinocytes and that Bcl-2 is a potent inhibitor of UVB-induced apoptosis both in vitro and in vivo.  相似文献   

12.
13.
In previous studies, we showed that green tea and black tea extracts and their major polyphenolic constituents protect against UVB light-induced carcinogenesis in murine skin. All of these studies required chronic administration of tea extracts or specific constituents either topically or orally. However, it is not known whether acute or subchronic administration of black tea extracts or constituents can ameliorate UVB-induced early effects in skin. In the present study, cultured keratinocytes and mouse and human skin were employed to assess the effect of both oral and topical administration of standardized black tea extract (SBTE) and its two major polyphenolic subfractions namely BTF1 and BTF2 against UVB-induced photodamage. In SKH-1 hairless mice, topical application of SBTE (0.2 mg/cm2) prior to UVB exposure (180 mJ/cm2) resulted in 40% reduced incidence and 64% reduced severity of erythema and 50% reduction in skinfold thickness by day 6 when compared to nontreated UVB-exposed animals. The SBTE was also effective in protecting against UVB-induced erythema in human volunteers. Administration of SBTE 5 min after UVB irradiation was similarly effective in reducing UVB-induced inflammation in both murine and human skin. The major polyphenolic subfractions, BTF1 and BTF2, were also effective in protecting in mouse skin. The SBTE subfractions inhibited UVB-induced tyrosine phosphorylation of epidermal growth factor receptor (EGFR). The UVB irradiation of human epidermoid carcinoma cells resulted in 3.3-fold induction of tyrosine phosphorylation of EGFR. Pretreatment with BTF1 and BTF2 reduced tyrosine phosphorylation of EGFR by 53% and 31%, respectively. The UVB-mediated enhanced expression of the early response genes, c-fos and c-jun in human epidermal keratinocytes was reduced in a dose-dependent manner by SBTE. Topical application of SBTE was also effective in reducing accumulation of c-fos and p53 proteins by 82% and 78%, respectively, in UVB-exposed mouse skin. These data provide evidence that constituents of black tea can abrogate UVB-induced erythema and associated early events in murine and human skin.  相似文献   

14.
Exposure to UVB irradiation is a major risk factor for the development of skin cancer. Therefore, it is important to identify agents that can offer protection against UVB-caused damage. Photocarcinogenesis is caused largely by mutations at sites of incorrectly repaired DNA photoproducts, of which the most common are the cyclobutane pyrimidine dimers (CPDs). In this study, we demonstrated that 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] protects primary human keratinocytes against the induction of CPDs by UVB. This protection required pharmacologic doses 1,25(OH)2D3 and an incubation period of at least 8 h before irradiation. Furthermore, we provided arguments indicating that the anti-proliferative capacity of 1,25(OH)2D3 underlies its protective effect against UVB-induced DNA damage. Finally, we showed that 19-nor-14-epi-23-yne-1,25(OH)2D3 (TX 522) and 19-nor-14,20-bisepi-23-yne-1,25(OH)2D3 (TX 527), two low-calcemic analogues of 1,25(OH)2D3, were even 100 times more potent than the parent molecule in inhibiting UVB-caused DNA damage. These molecules are therefore promising candidates for the chemoprevention of UVB-induced skin cancer.  相似文献   

15.
The relationship between exposure to UV radiation and development of skin cancer has been well established. Several studies have shown that UVB induces unique mutations (C-->T and CC-->TT transitions) in the p53 tumor suppressor gene that are not commonly induced by other carcinogens. Our studies have demonstrated that UV-induced mouse skin cancers contain p53 mutations at a high frequency and that these mutations can be detected in UV-irradiated mouse skin well before the appearance of skin tumors. This observation suggested that it might be possible to use p53 mutations as a biologic endpoint for testing the efficacy of sunscreens in photoprotection studies. Indeed, application of SPF 15 sunscreens to mouse skin before each UVB irradiation resulted in reduction in the number of p53 mutations. Because p53 mutations represent an early essential step in photocarcinogenesis, these results imply that inhibition of this event may protect against skin cancer development. This hypothesis was confirmed by our finding that sunscreens used in p53 mutation inhibition experiments also protected mice against UVB-induced skin cancer.  相似文献   

16.
Ultraviolet B (UVB) irradiation may induce the acceleration of skin aging. The purpose of this study was to develop an effective formulation containing tannase-converted green tea extract (FTGE) to inhibit UVB-induced oxidative damage. Significant (p < 0.05) prevention of the reduced form of glutathione (GSH) depletion was observed in mice treated with FTGE. The hydrogen peroxide levels of mice treated with FTGE were similar to those of UVB non-irradiated mice. No significant difference was observed between No UVB control and FTGE mice. Also, mice treated with FTGE had significant (p < 0.05) decreases in thiobarbituric acid-reactive substance levels by lipid peroxidation compared with No UVB control mice. Our data suggest that this formulation may be effective in protecting skin from UVB photodamage.  相似文献   

17.
We compared the frequency and spectra of p53 mutations in skin tumors from UVB-irradiated and benzo(a)pyrene-UVA-treated SKH-1 mice. Analysis of p53 mutations using a combination of polymerase chain reaction, denaturing high-performance liquid chromatography, and sequencing shows that the frequency and spectrum of p53 mutations in BaP-UVA-induced tumors are quite different from those in UVB-induced tumors. SKH-1 mice were treated with BaP-UVA or UVB for 30 weeks after which skin tumors were collected for analysis of p53 mutations. Among the 11 BaP-UVA-induced tumors with diameters of 5-10 mm, two displayed mutations in exon 8 yielding a mutation frequency of 18.2%. In contrast, the mutation frequency among BaP-UVA-induced tumors was 10.5%. In UVB-induced tumors, the mutation frequency in exon 8 was highly correlated with tumor size. A total of 77.8% of tumors with diameters larger than 10 mm contained p53 mutations. The overall mutation frequency among UVB-induced tumors was 17.9% in exon 8 and only 3.8% in exon 5. Hotspots for p53 mutation in UVB-induced tumors were found at codons 128 and 149 (exon 5), and at codons 268, 270, 271 and 273-276 (exon 8). In addition to widely recognized C-->T missense mutations, there were also tandem CC-->AG changes coupled with either an insertion of T, a C-->G substitution or G-->C/T mutations. All of the mutations were found at tri- or tetra-pyrimidine sites. Thirty-nine per cent of all p53 mutations occurred at codons 274 and 275; 53% occurred at codons 268-271. Two multiple mutation clusters were located at codons 268-271 and 274-276. Both BaP-UVA and UVB caused C-->T transitions at codon 275 in exon 8. A C-->T mutation at codon 294 was induced only by BaP-UVA treatment. In contrast to UVB treatment, BaP-UVA treatment did not induce any mutations in exon 5. We show that individually subcarcinogenic levels of BaP and UVA synergistically induce a novel p53-mutation fingerprint. This fingerprint could serve as a prognostic indicator for the development of BaP-UVA-induced skin tumors.  相似文献   

18.
Usnea barbata and its major constituent usnic acid are potent antimicrobial agents. Here, we have investigated anti-inflammatory properties of an U. barbata extract (UBE) containing 4% usnic acid in an ultraviolet-B (UVB) model with HaCaT keratinocytes. UVB irradiation induced PGE(2) production and COX-2 expression in a time and dose-dependent manner. UBE inhibited PGE(2) production at a half-maximal concentration of 60 microg/ml (2.4 microg/ml usnic acid) that did not affect the UVB-induced upregulation of COX-2, suggesting an effect on enzyme activity rather than on protein expression. The inhibition of PGE(2) production by UBE was not due to cytotoxicity. Besides its known antimicrobial properties, UBE displays specific UVB protective effects that might be useful in the topical treatment of UVB-mediated inflammatory skin conditions.  相似文献   

19.
韩诗邈  赵丽萍  杨歌  屈锋 《色谱》2021,39(7):721-729
8-氧代鸟嘌呤DNA糖基化酶(OGG1)是人体中重要的功能蛋白,在修复DNA氧化性损伤过程中起关键作用。氧化应激等引起的氧化损伤易导致炎症反应的发生,对OGG1的抑制可以一定程度上起到缓解作用;对癌细胞OGG1的抑制有望作为癌症治疗的新方法。目前的研究多集中于小分子对OGG1功能的影响和调控,而OGG1的适配体筛选尚未见报道。作为功能配体,适配体具有合成简单、高亲和力及高特异性等优点。该文筛选了OGG1的核酸适配体,结合毛细管电泳高效快速的优点建立了两种基于毛细管电泳-指数富集进化(CE-SELEX)技术的筛选方法:同步竞争法和多轮筛选法。同步竞争法利用单链结合蛋白(SSB)与核酸库中单链核酸的强结合能力,与目标蛋白OGG1组成竞争体系,并通过增加SSB浓度来增加竞争筛选压力,以去除与OGG1弱结合的核酸序列,一步筛选即可获得与OGG1强结合的核酸序列。多轮筛选法在相同孵育条件和电泳条件下,经3轮筛选获得OGG1的核酸适配体。比较两种筛选方法的筛选结果,筛选结果中频次最高的3条候选核酸适配体序列一致,其解离常数(KD)值在1.71~2.64 μmol/L之间。分子对接分析结果表明候选适配体1(Apt 1)可能与OGG1中具有修复氧化性损伤功能的活性口袋结合。通过对两种筛选方法的对比,证明同步竞争法更加快速高效,对其他蛋白核酸适配体筛选方法的选择具有一定的指导意义。得到的适配体有望用于OGG1功能调控,以抑制其修复功能。  相似文献   

20.
UVB (280–315 nm) in natural sunlight represents a major environmental challenge to the skin and is clearly associated with human skin cancer. Here we demonstrate that low doses of UVB induce keratinocyte proliferation and cell cycle progression of human HaCaT keratinocytes. Different from UVA, UVB irradiation induced extracellular signal‐regulated kinase (ERK) and AKT activation and their activation are both required for UVB‐induced cell cycle progression. Activation of epidermal growth factor receptor (EGFR) was observed after UVB exposure and is upstream of ERK/AKT/cyclin D1 pathway activation and cell cycle progression following UVB radiation. Furthermore, metalloproteinase (MP) inhibitor GM6001 blocked UVB‐induced ERK and AKT activation, cell cycle progression, and decreased the EGFR phosphorylation, demonstrating that MPs mediate the EGFR/ERK/AKT/cyclin D1 pathways and cell cycle progression induced by UVB radiation. In addition, ERK or AKT activation is essential for EGFR activation because ERK or AKT inhibitor blocks EGFR activation following UVB radiation, indicating that EGFR/AKT/ERK pathways form a regulatory loop and converge into cell cycle progression following UVB radiation. Identification of these signaling pathways in UVB‐induced cell cycle progression of quiescent keratinocytes as a process mimicking tumor promotion in vivo will facilitate the development of efficient and safe chemopreventive and therapeutic strategies for skin cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号