首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 672 毫秒
1.
快速凝固Co-Cu包晶合金的电学性能   总被引:2,自引:2,他引:0       下载免费PDF全文
徐锦锋  魏炳波 《物理学报》2005,54(7):3444-3450
研究了Co-Cu包晶合金快速凝固过程中的相选择和组织形成特征, 探索了冷却速率、组织结构和晶体位向与合金电阻率之间的相关规律.实验发现, 快速凝固可使Co在(Cu)中的固溶度扩展至20%.Cu含量大于80%时, L+αCo→(Cu)包晶转变被抑制, (Cu)可从过冷熔体中直接形核析出.Cu含量在40%—70%范围时, Co-Cu合金的液相分离受到抑制, 凝固组织沿条带厚度方向分为两个晶区.细晶区中αCo和(Cu)相竞争形核并生长, αCo枝晶形态细密,细小的(Cu)等轴晶均匀分布于αCo的基体之中.粗晶区αCo相为领先相, 富Cu相分布于αCo枝晶的晶界处.随着冷速的增大, 合金组织显著细化, 晶界增多,对自由电子的散射作用增强, 合金电阻率显著增大.当晶界散射系数r=0996—0999时, 可采用M-S模型综合分析快速凝固Co-Cu合金的电阻率. 关键词: 电阻率 快速凝固 相结构 晶体生长  相似文献   

2.
李志强  王伟丽  翟薇  魏炳波 《物理学报》2011,60(10):108101-108101
采用自由落体和单辊急冷技术研究了三元Fe62.1Sn27.9Si10偏晶合金的相分离和组织形成规律,理论分析了两种快速凝固条件下合金的传热特性.自由落体条件下,由于Marangoni迁移和表面偏析势的作用,液滴凝固组织主要形成富Sn相包裹富Fe相的两层壳核结构.随着液滴直径减小,冷却速率和温度梯度增大,促进偏晶胞快速生长.在单辊急冷条件下,随着辊速的增大,冷却速率从1.1×107增大至6.5×107 K/s,合金熔体内部的液相流动和相分离受到抑制,凝固组织发生"九层结构→两层结构→无分层结构"的转变.同时,凝固过程中FeSn+L2→FeSn2包晶反应受到抑制,形成与自由落体条件下不同的相组成.EDS分析显示,αFe相在快速凝固过程中发生显著溶质截留效应. 关键词: Fe-Sn-Si偏晶合金 相分离 快速凝固 溶质截留  相似文献   

3.
无容器条件下Cu-Pb偏晶的快速生长   总被引:2,自引:1,他引:2       下载免费PDF全文
刘向荣  王楠  魏炳波 《物理学报》2005,54(4):1671-1678
在落管无容器条件下实现了Cu-10%Pb亚偏晶和Cu_374%Pb偏晶的快速生长. 发现随着液滴 过冷度的增大, 亚偏晶中初生(Cu)相的生长形态经历“粗大枝晶→碎断枝晶→等轴晶”的转 变. 偏晶的组织形态从多个偏晶胞组织演化为单个偏晶胞组织. 理论计算表明,直径在1000 —60 μm之间的亚偏晶和偏晶合金液滴, 最大过冷度分别为269 K (02 TLL )和245 K (02 TMM). 亚偏晶合金中初生(Cu)枝晶的最大生长速度为24 m/s , 关键词: 无容器处理 深过冷 晶体生长 相分离  相似文献   

4.
殷涵玉  鲁晓宇 《物理学报》2008,57(7):4341-4346
实现了大体积Cu60Sn30Pb10偏晶合金的深过冷与快速凝固. 实验获得的最大过冷度为173 K(0.17TL). 凝固组织发生了明显的宏观偏析,XRD分析表明,试样上部是由固溶体(Sn),(Pb)相和金属间化合物ε(Cu3Sn)相组成的三相区,下部为富(Pb)相区. 在小过冷条件下,三相区中ε(Cu3Sn)相的凝固组织为粗大的枝晶,随着过冷度的增大,ε(Cu3Sn)相细化成层片状组织,且层片间距随过冷度的增大而减小,而(Sn),(Pb)两相始终以离异共晶的方式存在. 富(Pb)相区中分布有少量的ε(Cu3Sn)枝晶,枝晶长度随过冷度的增大而增大,且在大过冷条件下发生碎断. (Sn)相在ε(Cu3Sn)相表面形核、长大,其形态类似于包晶凝固组织. 关键词: 深过冷 快速凝固 偏晶合金 层片组织  相似文献   

5.
鲁晓宇  廖霜  阮莹  代富平 《物理学报》2012,61(21):352-358
采用落管无容器处理技术实现了Ti61.2Cu32.5Fe6.3三元包共晶合金在自由落体条件下的快速凝固,获得了直径为80—1120μm液滴的凝固组织.实验中获得的过冷度范围为34—293 K,最大过冷度达0.23TL.研究发现,在自由落体条件下,由于受到无容器、微重力、超高真空等因素的影响,合金熔体的凝固组织中包含Cu0.8Fe0.2Ti相、CuTi2相和CuT3相,显著偏离了平衡状态.Cu0.8Fe0.2Ti为初生相,同时又与CuTi2相形成两相共晶;CuTi3相则呈现枝晶形貌,并发生了明显的溶质截留效应.随着过冷度的增大,共晶组织由层片共晶向不规则共晶转变,形貌由长条状共晶团变为椭球状共晶团,最终变为球状共晶胞;Cu0.8Fe0.2Ti相枝晶形貌由粗大枝晶变为碎断枝晶,进一步变成不规则的粒状晶粒;CuTi3相枝晶则由碎块状转变为完整枝晶.  相似文献   

6.
臧渡洋  王海鹏  魏炳波 《物理学报》2007,56(8):4804-4809
研究了深过冷条件下三元Ni80Cu10Co10合金的快速枝晶生长, 采用电磁悬浮无容器处理方法获得了335 K(0.2TL)的最大过冷度. X射线衍射分析与差示扫描量热分析均表明,凝固组织为α-Ni单相固溶体. 随过冷度增大, 凝固组织显著细化, 并且当过冷度达110 K时,凝固组织的形态由粗大形枝晶转变为等轴晶. 深过冷条件下溶质截留效应增强, 使得微观偏析程度减小. 对不同过冷度下合金枝晶的生长速度进 关键词: 深过冷 枝晶生长 快速凝固 溶质截留  相似文献   

7.
利用电磁悬浮无容器处理技术实现了液态五元Zr57Cu20Al10Ni8Ti5合金的深过冷与快速凝固,同时通过分子动力学模拟计算揭示了非晶形成的微观机制.实验发现,凝固组织具有明显的核-壳结构特征,核区为非晶相,壳区主要由ZrCu, Zr2Cu和Zr8Cu5晶体相组成.非晶体积分数随合金过冷度的升高逐渐增大,当达到实验最大过冷度300 K (0.26TL)时,非晶体积分数增至81.3%.由此导出完全非晶凝固所需临界过冷度为334 K. TEM分析显示,过冷度增大并接近临界过冷度时,合金凝固组织中晶体相主要为Zr8Cu5相,而ZrCu和Zr2Cu相的生长被抑制.在达到临界过冷度后,过冷液相的凝固路径由Zr8Cu5结晶生长转变为非晶凝固.此外,合金的晶体壳中存在少量的晶间非晶相,而非晶核中...  相似文献   

8.
翟薇  王楠  魏炳波 《物理学报》2007,56(4):2353-2358
为了揭示自由落体条件下偏晶合金壳核组织的形成机制,基于相似性原理设计了一种环形温度场,对丁二腈-52.6mol%H2O偏晶溶液的相分离过程进行了实时观测. 发现在两个不混溶液相的分离过程中,富水相液滴经历了“析出→迁移→凝并→聚集"运动过程,最终形成以富水相为中心的两层壳核组织. 同时测定了液滴的运动速率,并对Marangoni迁移速率进行了理论计算,两者能够较好地符合. 由此证实了在偏晶溶液的相分离过程中,第二液相主要是在温度梯度的驱动下产生Marangoni迁移. 这一实验直观地再现了落管无容器处理过程中液滴内部的相分离过程. 关键词: 相分离 偏晶溶液 Marangoni迁移 微重力  相似文献   

9.
采用自由落体和熔体急冷两种实验技术实现了三元等原子比Fe_(33.3)Cn_(33.3)Sn_(33.3)合金的快速凝固,研究了其组织形成机理和室温磁性特征.实验发现,合金熔体在不同快速凝固条件下都没有发生液相分离,其室温组织均由初生αFe相枝晶以及CU_3SU和CU_6Sn_5二个包晶相组成计算表明,落管中合金液滴的表面冷却速率和过冷度分别达1.3×10~5 K·s~(-1)和283 K(0.19 T_L)当表面冷却速率增大至3.3×10~3 K·s~(-1),初生αFe相发生由粗大枝晶向碎断枝晶的演化.急冷快速凝固过程中,初生αFe相凝固组织沿辊面向自由面方向形成细晶区和粗晶区,其中细晶区以粒状晶为特征而粗晶区存在具有二次分枝的树枝晶随着表面冷却速率由8.9×10~6增大至2.7×10~7 K·s~(-1),αFe相平均晶粒尺寸显著减小,合金条带的矫顽力增大一倍多.  相似文献   

10.
利用扩展x射线吸收精细结构和x射线衍射研究了机械合金化制备的体心立方(bcc)的亚稳态Fe80Cu20合金固溶体的结构随退火温度的变化特点.结果表明,在300—873 K温度范围内,随着退火温度的升高,bcc结构物相的晶格常数近于线性降低,这主要是由于Cu原子从bcc结构Fe80Cu20合金固溶体中逐渐偏析出来,生成面心立方(fcc)结构的Cu物相所致.经603K退火后,Cu原子的平均键长RCu—Cu增加了0.003 nm左右,大约有50%的Cu原子从bcc结构的Fe80Cu20合金固溶体中偏析出来.在773 K退火后,bcc结构Fe80Cu20合金固溶体近于完全相分离,生成了bcc结构的α-Fe与fcc结构的Cu物相. 关键词: 扩展x射线吸收精细结构 x射线衍射 80Cu20合金')" href="#">Fe80Cu20合金 机械合金化  相似文献   

11.
The phase separation and dendrite growth characteristics of ternary Fe-43.9%Sn- 10%Ge and Cu-35.5%Pb-5%Ge monotectic alloys were studied systematically by the glass fluxing method under substantial undercooling conditions. The maximum undercoolings obtained in this work are 245 and 257 K, respectively, for these two alloys. All of the solidified samples exhibit serious macrosegregation, indicating that the homogenous alloy melt is separated into two liquid phases prior to rapid solidification. The solidification structures consist of four phases including α-Fe, (Sn), FeSn and FeSn2 in Fe-43.9%Sn-10%Ge ternary alloy, whereas only (Cu) and (Pb) solid solution phases in Cu-35.5%Pb-5%Ge alloy under different undercoolings. In the process of rapid monotectic solidification, α-Fe and (Cu) phases grow in a dendritic mode, and the transition "dendrite→monotectic cell" happens when alloy undercoolings become sufficiently large. The dendrite growth velocities of α-Fe and (Cu) phases are found to increase with undercooling according to an exponential relation.  相似文献   

12.
We report a solidification mechanism transition of liquid ternary Co45Cu45Ni10 alloy when it solidifies at a critical undercooling of about 344 K. When undercooling at ΔT<344 K, the solidification process is characterized by primary S (Co) dendritic growth and a subsequent peritectic transition. The dendritic growth velocity of S (Co) dendrite increases with the rise of undercooling. However, once ΔT>344 K, the solidification velocity decreases with the increase of undercooling. In this case, liquid/liquid phase separation takes place prior to solidification. The minor L2 (Cu) droplets hinder the motion of the solidification front, and a monotectic transition may occur in the major L1 phase. These facts caused by metastable phase separation are responsible for the slow growth at high undercoolings.  相似文献   

13.
The phase separation and rapid solidification of liquid ternary Co45Cu42Pb13 immiscible alloy have been investigated under both bulk undercooling and containerless processing conditions. The undercooled bulk alloy is solidified as a vertical two-layer structure, whereas the containerlessly solidified alloy droplet is characterized by core-shell structures. The dendritic growth velocity of primary α(Co) phase shows a power-law relation to undercooling and achieves a maximum of 1.52 m/s at the undercooling of 112 K. The Pb content is always enriched in Cu-rich zone and depleted in Co-rich zone. Numerical analyses indicate that the Stokes motion, solutal Marangoni convection, thermal Marangoni convection, and interfacial energy play the main roles in the correlated process of macrosegregation evolution and microstructure formation.  相似文献   

14.
Rapid solidification of undercooled Fe-Co-Cu alloys was investigated by means of fluxing purification and cyclic superheating technique. A transition in microstructure from dendrites to phase-separation occurred above a phase-separation undercooling ΔTsep. When ΔTTsep, dendrite was observed, the trunks were rich in Fe and Co, while Cu was rich at inter-dendrites. However, the phase-separated microstructure was obtained once ΔTTsep, with a large sphere of L1 phase located almost at the center of the sample and enwrapped by L2 phase. ΔTsep was 222, 88 and 45 K for Fe50Co30Cu20, Fe25Co25Cu50 and Fe15Co15Cu70 alloys in this work, respectively. It was investigated that L1 phase solidified before L2 phase after liquid separation and followed different ways.  相似文献   

15.
Rapid solidification of binary Cu-22%Sn peritectic alloys and Cu-5%Sn-5%Ni-5%Ag quaternary alloys was accomplished by glass fluxing, drop tube and melt spinning methods. The undercooled, by glass fluxing method, Cu-22%Sn peritectic alloy was composed of α(Cu) and δ(Cu41Sn11) phases. If rapidly solidified in a drop tube, the alloy phase constitution changed from α(Cu) and δ(Cu41Sn11) phases into a single supersaturated (Cu) phase with the reducing of droplet diameter, and the maximum solubility of Sn in (Cu)...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号