首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let R = (r1,…, rm) and S = (s1,…, sn) be nonnegative integral vectors, and let U(R, S) denote the class of all m × n matrices of 0's and 1's having row sum vector R and column sum vector S. An invariant position of U(R, S) is a position whose entry is the same for all matrices in U(R, S). The interchange graph G(R, S) is the graph where the vertices are the matrices in U(R, S) and where two matrices are joined by an edge provided they differ by an interchange. We prove that when 1 ≤ rin ? 1 (i = 1,…, m) and 1 ≤ sjm ? 1 (j = 1,…, n), G(R, S) is prime if and only if U(R, S) has no invariant positions.  相似文献   

2.
Let A(R, S) denote the class of all m×n matrices of 0's and 1's having row sum vector R and column sum vector S. The interchange graph G(R, S) is the graph where the vertices are the matrices in A(R, S) and where two matrices are joined by an edge provided they differ by an interchange. We characterize those A(R, S) for which the graph G(R, S) has diameter at most 2 and those A(R, S) for which G(R, S) is bipartite.  相似文献   

3.
Let %plane1D;518;2(R,S) be the class of all (0, 1, 2)-matrices with a prescribed row sum vector R and column sum vector S. A (0, 1,2)-matrix in %plane1D;518;2(R,S) is defined to be parsimonious provided no (0, 1, 2)-matrix with the same row and column sum vectors has fewer positive entries. In a parsimonious (0, 1, 2)-matrix A there are severe restrictions on the (0, 1)-matrix A(1) which records the positions of the 1's in A. Brualdi and Michael obtained some necessary arithmetic conditions for a set of matrices to serve simultaneously as the 1-pattern matrices for parsimonious matrices in a given class. In this paper, we provide a direct construction that proves that these conditions are also sufficient.  相似文献   

4.
We construct the nonstandard hull of a not necessarily bounded strongly continuous representationU of the locally compact semigroupS on a Banach spaceE. Then we apply our results to the theory of the spectrum σ (U) ofU, mainly in cases whereS is an abelian group, e.g.S=R. First of all we obtain generalizations to the unbounded case of results known for the bounded one. Secondly we introduce the notion of the Riesz part R σ(U) of σ(U) and characterize those representations satisfying σ(U)=R σ(U). We illustrate the theory developed so far by applications to representations on Banach lattices. Dedicated to Prof. Dr. H. H. Schaefer on the occasion of his 60th birthday  相似文献   

5.
Let R and S be two vectors whose components are m and n non-negative integers, respectively. Let A(R, S) be the class consisting of all (0, 1)-matrices of size m by n with row sum vector R and column sum vector S. In this paper we derive a lower bound to the cardinality of the class A(R, S), which can be computed readily.  相似文献   

6.
Let A and B be (n×n)-matrices. For an index set S ⊂ {1, …, n}, denote by A(S) the principal submatrix that lies in the rows and columns indexed by S. Denote by S′ the complement of S and define η(A, B) = det A(S) det B(S′), where the summation is over all subsets of {1, …, n} and, by convention, det A(∅) = det B(∅) = 1. C. R. Johnson conjectured that if A and B are Hermitian and A is positive semidefinite, then the polynomial η(λA,-B) has only real roots. G. Rublein and R. B. Bapat proved that this is true for n ⩽ 3. Bapat also proved this result for any n with the condition that both A and B are tridiagonal. In this paper, we generalize some little-known results concerning the characteristic polynomials and adjacency matrices of trees to matrices whose graph is a given tree and prove the conjecture for any n under the additional assumption that both A and B are matrices whose graph is a tree. __________ Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 10, No. 3, pp. 245–254, 2004.  相似文献   

7.
Recognition of finite groups by a set of orders of their elements   总被引:3,自引:0,他引:3  
For G a finite group, ω(G) denotes the set of orders of elements in G. If ω is a subset of the set of natural numbers, h(ω) stands for the number of nonisomorphic groups G such that ω(G)=ω. We say that G is recognizable (by ω(G)) if h(ω(G))=1. G is almost recognizable (resp., nonrecognizable) if h(ω(G)) is finite (resp., infinite). It is shown that almost simple groups PGLn(q) are nonrecognizable for infinitely many pairs (n, q). It is also proved that a simple group S4(7) is recognizable, whereas A10, U3(5), U3(7), U4(2), and U5(2) are not. From this, the following theorem is derived. Let G be a finite simple group such that every prime divisor of its order is at most 11. Then one of the following holds: (i) G is isomorphic to A5, A7, A8, A9, A11, A12, L2(q), q=7, 8, 11, 49, L3(4), S4(7), U4(3), U6(2), M11, M12, M22, HS, or McL, and G is recognizable by the set ω(G); (ii) G is isomorphic to A6, A10, U3(3), U4(2), U5(2), U3(5), or J2, and G is nonrecognizable; (iii) G is isomorphic to S6(2) or O 8 + (2), and h(ω(G))=2. Supported by RFFR grant No. 96-01-01893. Translated fromAlgebra i Logika, Vol. 37, No. 6, pp. 651–666, November–December, 1998.  相似文献   

8.
Let 𝔽 be a field of characteristic two. Let S n (𝔽) denote the vector space of all n?×?n symmetric matrices over 𝔽. We characterize i. subspaces of S n (𝔽) all whose elements have rank at most two where n???3,

ii. linear maps from S m (𝔽) to S n (𝔽) that sends matrices of rank at most two into matrices of rank at most two where m, n???3 and |𝔽|?≠?2.

  相似文献   

9.
The undirected power graph G(S) of a semigroup S is an undirected graph whose vertex set is S and two vertices a,bS are adjacent if and only if ab and a m =b or b m =a for some positive integer m. In this paper we characterize the class of semigroups S for which G(S) is connected or complete. As a consequence we prove that G(G) is connected for any finite group G and G(G) is complete if and only if G is a cyclic group of order 1 or p m . Particular attention is given to the multiplicative semigroup ℤ n and its subgroup U n , where G(U n ) is a major component of G(ℤ n ). It is proved that G(U n ) is complete if and only if n=1,2,4,p or 2p, where p is a Fermat prime. In general, we compute the number of edges of G(G) for a finite group G and apply this result to determine the values of n for which G(U n ) is planar. Finally we show that for any cyclic group of order greater than or equal to 3, G(G) is Hamiltonian and list some values of n for which G(U n ) has no Hamiltonian cycle.  相似文献   

10.
The toughness indexτ(G) of a graph G is defined to be the largest integer t such that for any S ? V(G) with |S| > t, c(G - S) < |S| - t, where c(G - S) denotes the number of components of G - S. In particular, 1-tough graphs are exactly those graphs for which τ(G) ≥ 0. In this paper, it is shown that if G is a planar graph, then τ(G) ≥ 2 if and only if G is 4-connected. This result suggests that there may be a polynomial-time algorithm for determining whether a planar graph is 1-tough, even though the problem for general graphs is NP-hard. The result can be restated as follows: a planar graph is 4-connected if and only if it remains 1-tough whenever two vertices are removed. Hence it establishes a weakened version of a conjecture, due to M. D. Plummer, that removing 2 vertices from a 4-connected planar graph yields a Hamiltonian graph.  相似文献   

11.
《Quaestiones Mathematicae》2013,36(5):613-629
Abstract

Let R be a commutative ring with nonzero identity, and let I be an ideal of R. The ideal-based zero-divisor graph of R, denoted by ΓI (R), is the graph whose vertices are the set {xR \ I| xyI for some yR \ I} and two distinct vertices x and y are adjacent if and only if xyI. Define the comaximal graph of R, denoted by CG(R), to be a graph whose vertices are the elements of R, where two distinct vertices a and b are adjacent if and only if Ra+Rb=R. A nonempty set S ? V of a graph G=(V, E) is a dominating set of G if every vertex in V is either in S or is adjacent to a vertex in S. The domination number γ(G) of G is the minimum cardinality among the dominating sets of G. The main object of this paper is to study the dominating sets and domination number of ΓI (R) and the comaximal graph CG2(R) \ J (R) (or CGJ (R) for short) where CG2(R) is the subgraph of CG(R) induced on the nonunit elements of R and J (R) is the Jacobson radical of R.  相似文献   

12.
We give a bicategorical version of the main result of Masuoka (Tsukuba J Math 13:353–362, 1989) which proposes a non-commutative version of the fact that for a faithfully flat extension of commutative rings R í SR \subseteq S, the relative Picard group Pic(S/R) is isomorphic to the Amitsur 1–cohomology group H 1(S/R,U) with coefficients in the units functor U.  相似文献   

13.
《Quaestiones Mathematicae》2013,36(2):159-164
Abstract

The Steiner distance d(S) of a set S of vertices in a connected graph G is the minimum size of a connected subgraph of G that contains S. The Steiner number s(G) of a connected graph G of order p is the smallest positive integer m for which there exists a set S of m vertices of G such that d(S) = p—1. A smallest set S of vertices of a connected graph G of order p for which d(S) = p—1 is called a Steiner spanning set of G. It is shown that every connected graph has a unique Steiner spanning set. If G is a connected graph of order p and k is an integer with 0 ≤ k ≤ p—1, then the kth Steiner number sk(G) of G is the smallest positive integer m for which there exists a set S of m vertices of G such that d(S) = k. The sequence so(G),s1 (G),…,8p-1(G) is called the Steiner sequence of G. Steiner sequences for trees are characterized.  相似文献   

14.
Let k ≥ 2 be an integer. We show that if G is a (k + 1)-connected graph and each pair of nonadjacent vertices in G has degree sum at least |G| + 1, then for each subset S of V(G) with |S| = k, G has a spanning tree such that S is the set of endvertices. This result generalizes Ore’s theorem which guarantees the existence of a Hamilton path connecting any two vertices. Dedicated to Professor Hikoe Enomoto on his 60th birthday.  相似文献   

15.
Luca Preciso 《代数通讯》2013,41(7):2745-2764
A semigroup S is called collapsing if there exists a positive integer n such that for every subset of n elements in S at least two distinct words of length n on these letters are equal in S. Let U(A) denote the group of units of an associative algebra A over an infinite field of characteristic p > 0. We show that if A is unitally generated by its nilpotent elements then the following conditions are equivalent: U(A) is collapsing; U(A) satisfies some semigroup identity; U(A) satisfies an Engel identity; A satisfies an Engel identity when viewed as a Lie algebra; and, A satisfies a Morse identity. The characteristic zero analogue of this result was proved by the author in a previous paper.  相似文献   

16.
For a connected graph G = (V, E), an edge set S ì E{S\subset E} is called a k-restricted edge cut if GS is disconnected and every component of GS contains at least k vertices. The k-restricted edge connectivity of G, denoted by λ k (G), is defined as the cardinality of a minimum k-restricted edge cut. For two disjoint vertex sets U1,U2 ì V(G){U_1,U_2\subset V(G)}, denote the set of edges of G with one end in U 1 and the other in U 2 by [U 1, U 2]. Define xk(G)=min{|[U,V(G)\ U]|: U{\xi_k(G)=\min\{|[U,V(G){\setminus} U]|: U} is a vertex subset of order k of G and the subgraph induced by U is connected}. A graph G is said to be λ k -optimal if λ k (G) = ξ k (G). A graph is said to be super-λ k if every minimum k-restricted edge cut is a set of edges incident to a certain connected subgraph of order k. In this paper, we present some degree-sum conditions for balanced bipartite graphs to be λ k -optimal or super-λ k . Moreover, we demonstrate that our results are best possible.  相似文献   

17.
18.
In this paper we establish the spectral decomposition of the Berezin transforms on the space Mat(2,) of complex 2×2 matrices related to the two-sided action ofU(2)×U(2). The eigenspaces are described explicitly by means of the matrix elements of a certain representation ofGL(2,) and each eigenvalue is expressed as a finite sum involving the MeijerG-functions evaluated at 1 and the Hahn polynomials.  相似文献   

19.
R is any ring with identity. Let Spec r (R) (resp. Max r (R), Prim r (R)) denote the set of all right prime ideals (resp. all maximal right ideals, all right primitive ideals) of R and let U r (eR) = {P ? Spec r (R)| e ? P}. Let  = ∪P?Prim r (R) Spec r P (R), where Spec r P (R) = {Q ?Spec r P (R)|P is the largest ideal contained in Q}. A ring is called right quasi-duo if every maximal right ideal is 2-sided. In this article, we study the properties of the weak Zariski topology on and the relationships among various ring-theoretic properties and topological conditions on it. Then the following results are obtained for any ring R: (1) R is right quasi-duo ring if and only if is a space with Zariski topology if and only if, for any Q ? , Q is irreducible as a right ideal in R. (2) For any clopen (i.e., closed and open) set U in ? = Max r (R) ∪  Prim r (R) (resp.  = Prim r (R)) there is an element e in R with e 2 ? e ? J(R) such that U = U r (eR) ∩  ? (resp. U = U r (eR) ∩  ), where J(R) is the Jacobson of R. (3) Max r (R) ∪  Prim r (R) is connected if and only if Max l (R) ∪  Prim l (R) is connected if and only if Prim r (R) is connected.  相似文献   

20.
We study some properties of subtree-prune-and-regraft (SPR) operations on leaflabelled rooted binary trees in which internal vertices are totally ordered. Since biological events occur with certain time ordering, sometimes such totally-ordered trees must be used to avoid possible contradictions in representing evolutionary histories of biological sequences. Compared to the case of plain leaf-labelled rooted binary trees where internal vertices are only partially ordered, SPR operations on totally-ordered trees are more constrained and therefore more difficult to study. In this paper, we investigate the unit-neighbourhood U(T), defined as the set of totally-ordered trees one SPR operation away from a given totally-ordered tree T. We construct a recursion relation for | U(T) | and thereby arrive at an efficient method of determining | U(T) |. In contrast to the case of plain rooted trees, where the unit-neighbourhood size grows quadratically with respect to the number n of leaves, for totally-ordered trees | U(T) | grows like O(n3). For some special topology types, we are able to obtain simple closed-form formulae for | U(T) |. Using these results, we find a sharp upper bound on | U(T) | and conjecture a formula for a sharp lower bound. Lastly, we study the diameter of the space of totally-ordered trees measured using the induced SPR-metric. Received May 18, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号