首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
在37 ℃, pH=7.4~9.4, 40 mmol?L-1的巴比妥钠-HCl缓冲体系中, 利用热动力学方法研究了NaF对精氨酸酶催化L-精氨酸水解反应的抑制作用. 实验结果表明, NaF对精氨酸酶反应的抑制作用, 属于非竞争性可逆抑制, 其抑制率依赖于反应体系的pH值, 底物L-精氨酸和外源Mn2+离子对相对抑制率和抑制常数的影响不显著. 在pH值为7.4, 外源锰离子浓度分别为0和0.167 mmol?L-1时的抑制常数分别为1.48和1.84 mmol?L-1. F离子对精氨酸酶的抑制不是与底物L-精氨酸竞争酶的活性位, 而是影响了水分子与双核锰簇的桥式配位作用, 使反应过程中, 作为亲核试剂进攻L-精氨酸胍基碳的羟基离子难于生成或使其浓度减小, 从而降低了酶反应活性.  相似文献   

2.
A new thermokinetic reduced extent method for the product inhibition of single substrate enzyme-catalyzed reactions is proposed and compared with the traditional initial rate method in this paper. The arginase-catalyzed hydrolysis of L-arginine to L-ornithine and urea was studied at 37°C in 40 mM sodium barbiturate-HCl buffer solution (pH=9.4). Michaelis constant (K m) for arginine and maximum velocity (V m) of the reaction were determined by initial method and thermokinetic method. The activation of exogenous manganese to this reaction was also studied. The product inhibition constant (K P), which cannot be obtained directly from the initial rate method, was determined by thermokinetic without adding L-ornithine to the reaction system. When the concentration of Mn2+ in cell is 0.1 mM, the enzyme gets its full activity. Incubation arginase with appropriate concentration of Mn2+resulted in increased Vmax and a higher sensitivity of the enzyme to product with no change in the K m for arginine. We suggest that the exogenous manganese ions in solution have just recovered the activity of arginase, which was lost in dissolving and dilution, but no effect on the mechanism of the reaction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The activation of bovine liver arginase, which catalyzes the hydrolysis of L‐arginine to L‐ornithine and urea, by glycine was studied by thermokinetic methods at 37°C in 40 mmol·L?1 sodium barbiturate‐HCl buffer solution (pH 9.4). Results of this experiment indicate that an appropriate concentration of glycine can enhance the activity of arginase, and the relative activation rate reached its maximum value, 74%, when the concentration of glycine in reaction system was 1 mmol·L?1 and the initial concentration of arginine was 5 mmol·L?1. With the increase of substrate concentration, the relative activation rate decreased in a definite glycine concentration. Michealis constant Km of reaction decreased from 5.53 to 3.31 mmol·L?1 and inhibition constant of product L‐ornithine Kp increased from 1.18 to 3.73 mmol·L?1 when glycine concentration was 1 mmol·L?1. For these reasons one possible activation mechanism of arginase by glycine was suggested that the activation effect results from the competition of glycine and arginine to enzyme activity position. When one or two of the activity positions of arginase are occupied by glycine, it is propitious for the enzyme to complex with substrate and obstruct L‐ornithine from combining with enzyme, and when all of the activity positions are occupied by glycine, the activation effect vanishs and the inhibition effect appears.  相似文献   

4.
谢修银  汪存信  王志勇 《中国化学》2004,22(11):1257-1261
Introduction Arginase (EC 3.5.3.1) is a widespread and very im-portant enzyme in mammals, which specifically cata-lyzes the hydrolysis of L-arginine to urea and the non-protein amino acid L-ornithine, a key step in the urea cycle.1 Urea is the principal metabolite for disposal of nitrogen as a neutral and nontoxic waste product formed during amino acid metabolism in mammals. L-ornithine serves as a biosynthetic precursor to L-proline and the polyamines such as putrescine, sper-mine (in eucar…  相似文献   

5.
The activation of bovine liver arginase, which catalyzes the hydrolysis of l-arginine to l-ornithine and urea, by manganese ions was studied by thermokinetic methods at 37 °C in 40 mM sodium barbiturate-HCl buffer solution (pH 9.4). Full activation of arginase, by incubation with 0.1 mM Mn2+, resulted in increased of Vmax, and a higher sensitivity of the enzyme to product and l-lysine inhibition, with no change in the Km for arginine. Upon addition of 0.1 mM Mn2+ to the reaction, the inhibitory constants of product (KP) and l-lysine (KI) decreased from 1.18 to 0.70 mM and from 5.60 to 3.10 mM, respectively. We suggest that the exogenous manganese ions in reaction recovered the activity of arginase, which was lost in dissolving and dilution, without effecting on the mechanism of the reaction.  相似文献   

6.
The MnIV complex of tetra-deprotonated 1,8-bis(2-hydroxybenzamide)-3,6-diazaoctane (MnIVL) engrossed in phenolate-amido-amine coordination is reduced by HSO3 and SO32− in the pH range 3.15–7.3 displaying biphasic kinetics, the MnIIIL being the reactive intermediate. The MnIIIL species has been characterized by u.v.–vis. spectra {λ max, (ε, dm3 mol−1 cm−1): 285(15 570), 330 sh (7570), 469(6472), 520 sh (5665), pH=5.42}. SO42− was the major oxidation product of SIV; dithionate is also formed (18 ± 2% of [MnIV]T) which suggests that dimerisation of SO3−• is competitive with its fast oxidation by MnIV/III. The rates and activation parameters for MnIVL + HSO3 (SO32−) → MnIIIL; MnIIIL + HSO3 (SO32−) → MnIIL2− are reported at 28.5–45.0 °C (I=0.3 mol dm−3, 10% (v/v) MeOH + H2O). Reduction by SO32− is ca. eight times faster than by HSO3 both for MnIVL and MnIIIL. There was no evidence of HSO3/SO32− coordination to the Mn centre indicating an outer sphere (ET) mechanism which is further supported by an isokinetic relationship. The self exchange rate constant (k22) for the redox couple, MnIIIL/MnIVL (1.5 × 106 dm3 mol−1 s−1 at 25 °C) is reported.  相似文献   

7.
The mixed valence manganese(II/IV) complex, [MnIIL2(MeOH)2]·[MnIVL2(OAc)2]·2(MeOH) (1), and the chloride-bridged 1D polymeric manganese(III) complex, [MnIIIL2(μ-Cl)]n (2), where L is the deprotonated form of 2-ethoxy-6-[(2-phenylaminoethylimino)methyl]phenol (HL), have been prepared and structurally characterized by single-crystal X-ray diffraction analysis and IR spectra. The Mn atoms in both complexes are octahedrally coordinated. The self-assembly of the complex structures is apparently directed by the anions of the manganese salts.  相似文献   

8.
A highly sensitive method for determination of berberine is proposed based on the measurements of total internal reflected fluorescence (TIRF) at water/ tetrachloromethane (H2O/CCl4) interface. In the pH range of 2.6–5.7, the co-adsorption of the berberine with the anionic surfactants such as sodium dodecyl benzene sulfonate (SDBS), sodium dodecylsulfonate (SDS), and sodium lauryl sulfate (SLS) occurs at the H2O/CCl4 interface, resulting in greatly enhanced TIRF signal characterized by the emission at 526 nm when excited with a 351 nm light beam. The enhanced TIRF intensity is in proportion to the berberine concentration in the range 0.2–10.0×10-7 mol L-1. The limit of detection is 1.7×10-9 mol L-1 (3). It was found that ions such as Ca(II), Cu(II), Fe(III), Cd(II), Mg(II), Zn(II), Pb(II), and Al(III) can be allowed larger than 1.0×10-4 mol L-1. Meanwhile, the organic compounds such as vitamin B, saccharine, and amino acid do not display any effect for the present TIRF method even if they are larger than 1.0×10-2 mol L-1in high concentration levels (larger than 1.0×10-5 mol L-1). The results of determination for synthetic samples were agreement with the desired values, and the ones for tablets were identical with those obtained according to the method of Chinese Pharmacopoeia.  相似文献   

9.
The redox behaviour of hexakismethylisonitrilmanganese(I) [MnL 6 +] has been studied in acetic acid, dichloromethane, 1,2-dichloroethane, propylenecarbonate, butyrolactone, methanol, ethanol, nitromethane, acetonitrile, N-methyl-2-pyrrolidinone, dimethylformamide, dimethyl sulfoxide and water. The reversible diffusion-controlled oxidation MnL 6 +/MnL 6 2+ could be observed in all solvents studied, on both the dropping mercury electrode and the stationary platinum electrode. Employing tetrabutylammonium perchlorate as supporting electrolyte, the oxidation MnL 6 2+/MnL 6 3+ was observable only in acetic acid, nitromethane, 1,2-dichloroethane, dichloromethane, propylenecarbonate, butyrolactone and acetonitrile. In all other solvents oxidation of the solvent preceded the oxidation MnL 6 2+/MnL 6 3+. Poorly defined polarographic waves attributable to the one electron reduction of the MnL 6 + were observed in butyrolactone, propylenecarbonate, acetonitrile, dimethylformamide, N-methyl-2-pyrrolidinone and dimethyl sulfoxide. All potential values were recorded versus bisbiphenylchromium(I)-iodide [BBCr(I)J], the problems of measuring against external aqueous reference electrodes are discussed. The redox potential of the process MnL 6 +/MnL 6 2+ was found to be a function of the donor properties of the solvents used; the effects of outer sphere coordination on the redox behaviour of this couple are discussed. No effect of the supporting electrolytes tetrabutylammonium perchlorate, tetraethylammonium nitrate and tetraethylammonium perchlorate on the redox behaviour of MnL 6 + was found. The UV-spectrum of MnL 6(PF6)2 has been recorded.

Mit 3 Abbildungen  相似文献   

10.
The redox behaviour of hexakismethylisonitrilmanganese(I) [MnL 6 +] has been studied in acetic acid, dichloromethane, 1,2-dichloroethane, propylenecarbonate, butyrolactone, methanol, ethanol, nitromethane, acetonitrile, N-methyl-2-pyrrolidinone, dimethylformamide, dimethyl sulfoxide and water. The reversible diffusion-controlled oxidation MnL 6 +/MnL 6 2+ could be observed in all solvents studied, on both the dropping mercury electrode and the stationary platinum electrode. Employing tetrabutylammonium perchlorate as supporting electrolyte, the oxidation MnL 6 2+/MnL 6 3+ was observable only in acetic acid, nitromethane, 1,2-dichloroethane, dichloromethane, propylenecarbonate, butyrolactone and acetonitrile. In all other solvents oxidation of the solvent preceded the oxidation MnL 6 2+/MnL 6 3+. Poorly defined polarographic waves attributable to the one electron reduction of the MnL 6 + were observed in butyrolactone, propylenecarbonate, acetonitrile, dimethylformamide, N-methyl-2-pyrrolidinone and dimethyl sulfoxide. All potential values were recorded versus bisbiphenylchromium(I)-iodide [BBCr(I)J], the problems of measuring against external aqueous reference electrodes are discussed. The redox potential of the process MnL 6 +/MnL 6 2+ was found to be a function of the donor properties of the solvents used; the effects of outer sphere coordination on the redox behaviour of this couple are discussed. No effect of the supporting electrolytes tetrabutylammonium perchlorate, tetraethylammonium nitrate and tetraethylammonium perchlorate on the redox behaviour of MnL 6 + was found. The UV-spectrum of MnL 6(PF6)2 has been recorded.  相似文献   

11.
Dimanganese complexes Mn2 III(L1)(OAc)4 and Mn2 III(L2)(OAc)4 with the phthalazine-based ligands 1,4-di(2′-benzimidazolyl)aminophthalazine (H2L1) and 1,4-di(N-methyl-2′-benzimidazolyl)aminophthalazine (H2L2) have been prepared and characterized. The complexes accelerate the disproportionation of H2O2 into water and dioxygen in buffered aqueous solutions in a near-neutral pH range thus can be regarded as catalase models. Results of kinetic measurements indicate a similar mechanism for the two catalysts, but formation of the proposed peroxo-adduct intermediate is less favored for Mn2 III(L1)(OAc)4. It is presumed to be the reason for the lower rates for this catalyst even at higher pH.  相似文献   

12.
A new kind of bismuth film modified electrode to sensitively detect trace metal ions based on incorporating highly conductive ionic liquids 1‐butyl‐3‐methyl‐imidazolium hexafluorophosphate (BMIMPF6) in solid matrices at glassy carbon (GC) was investigated. Poly(sodium 4‐styrenesulfonate) (PSS), silica, and Nafion were selected as the solid matrices. The electrochemical properties of the mixed films modified GC were evaluated. The electron transfer rate of Fe(CN)64?/Fe(CN)63? can be effectively improved at the PSS‐BMIMPF6 modified GC. The bismuth modified PSS‐BMIMPF6 composite film electrodes (GC/PSS‐BMIMPF6/BiFEs) displayed high mechanical stability and sensitive stripping voltammetric performances for the determination of trace metal cations. The GC/PSS‐BMIMPF6/BiFE exhibited well linear response to both Cd(II) and Pb(II) over a concentration range from 1.0 to 50 μg L?1. And the detection limits were 0.07 μg L?1 for Cd(II) and 0.09 μg L?1 for Pb(II) based on three times the standard deviation of the baseline with a preconcentration time of 120 s, respectively. Finally, the GC/PSS‐BMIMPF6/BiFEs were successfully applied to the determination of Cd(II) and Pb(II) in real sample, and the results of present method agreed well with those of atomic absorption spectroscopy.  相似文献   

13.
A highly sensitive automated sequential‐injection chemiluminescence (SIA‐CL) method for determination of glucosamine sulphate (GLS) was developed. The goal of the present work is the evaluation of the enhancement effect of the investigated drug glucosamine sulphate on the chemiluminescence reaction between luminol and H2O2 in alkaline medium of 1.0 × 10?2 mol L?1 sodium hydroxide at pH 11. The experimental conditions affecting the CL reaction such as the sequence of the reagents, concentrations, flow rate and aspirated volumes of reactants were systematically investigated and optimized. Under optimum conditions 50 μL of 1.0 × 10?3 mol L?1 luminol, 30 μL of a GLS test solution and 50 μL of 1.0 × 10?2 mol L?1 H2O2 were used and the luminescing zone was pushed into the detector at a flow rate 100 μL s?1. The proposed method recorded high sensitivity, accuracy and simplicity that could be clarified as linear concentration range 1.0‐2000 ng mL?1 with rectilinear part (r = 0.9992, n = 9) and limit of detection 0.3 ng mL?1, along with relative standard deviation 1.3%. It was found that the developed method can be used directly to determine the investigated drug GLS in its pharmaceutical dosage forms and in spiked serum and urine by diluting the samples for a 1000 fold. The obtained results were statistically analyzed and compared with those obtained by the reported method.  相似文献   

14.
The new Mannich bases bis(1,4-diphenylthiosemicarbazide methyl) phosphinic acid H3L1 and bis(1,4-diphenylsemicarbazide methyl) phosphinic acid H3L2 were synthesised from the condensation of phosphinic acid, formaldehyde with 1,4-diphenyl thiosemicarbazide and 1,4-diphenylsemicarbazide, respectively. Monomeric complexes of these ligands, of general formulae K2[CrIII(L n )Cl2], K3[MnII(L n )Cl2] and K[M(L n )] (M = Co(II), Ni(II), Cu(II), Zn(II) or Hg(II); n = 1, 2), are reported. The mode of bonding and overall geometry of the complexes were determined through physico-chemical and spectroscopic methods. These studies revealed octahedral geometries for the Cr(III), Mn(II) complexes, square planar for Co(II), Ni(II) and Cu(II) complexes and tetrahedral for the Zn(II) and Hg(II) complexes.  相似文献   

15.
New Mannich bases bis(thiosemicarbazide methyl) phosphinic acid H3L1 and bis(1-phenylsemicarbazide methyl) phosphinic acid H3L2 were synthesized from condensation of phosphinic acid and formaldehyde with thiosemicarbazide and 1-phenylsemicarbazide, respectively. Monomeric complexes of these ligands, of general formula K2[CrIII(L n )Cl2], K3[FeII(L1)Cl2], K3[MnII(L2)Cl2], and K[M(L n )] (M = Co(II), Ni(II), Cu(II), Zn(II) or Cd(II); n = 1, 2) are reported. The mode of bonding and overall geometry of the complexes were determined through IR, UV-Vis, NMR, and mass spectral studies, magnetic moment measurements, elemental analysis, metal content, and conductance. These studies revealed octahedral geometries for the Cr(III), Mn(II), and Fe(II) complexes, square planar for Co(II), Ni(II), and Cu(II) complexes and tetrahedral for the Zn(II) and Cd(II) complexes. Complex formation via molar ratio in DMF solution has been investigated and results were consistent to those found in the solid complexes with a ratio of (M : L) as (1 : 1).  相似文献   

16.
A new microcomposite with copper(II) complex and carbon paste (CuC/CPE) was developed to determine the uric acid (UA) content in the presence of dopamine (DP) and was characterized via cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and energy dispersive spectroscopy (EDS). The results showed high selectivity for UA compared with DP because the anodic peak currents for DP were near those of a CPE without Cuc and were considerably increased for UA. The UA and DP increases were 86.9 % and 14.3 %, respectively, according to CV and 96.6 % and 25.5 %, respectively, according to square wave voltammetry (SWV) with the CuC/CPE. Moreover, the anodic peak separation for UA and DP was 0.17 V. With optimal parameters (pH, 3.3; adsorption time(tADS), 30 s;adsorption potential (EADS), 0.10 V), the anodic peak currents for UA were proportional to concentrations between 1.6 and 14.4 μmol L?1 using standard solutions with UA concentrations ranging from 8.0–40.5 μmol L?1 and real samples. The UA detection limit was 0.13 μmol L?1. The new sensor was used to determine the UA contentin human urine samples, and the method was checked with a urine chemistry control from Bio‐Rad based on human urine spiked with quantities of UA and showed a recovery between 84 % and 106 % at concentrations below 10.0 μmol L?1.  相似文献   

17.
Study of the sulphosalicylate complexes of copper(II), nickel(II), cobalt(II) and uranyl(II) by means of cation-exchange resins.The conditional stability constants of the 1:1 complexes of the sulphosalicylate ions (L3-) with copper(II), nickel(II), cobalt(II) and uranyl ions have been determined in a sodium perchlorate solution (0.1 M) and at various pH values by a cation-exchange method based on Schubert's procedure. The limits of application of the method are discussed. The variation with pH of the conditional stability constants can be explained by the existence of the complexes: CuH2L, CuHL, CuL-; NiH2L+, NiHL, NiL-; CoHL, CoL-; UO2H2L+, UO2HL, UO2L-, UO2LOH2-. The stability constants of these complexes are reported. Distribution diagrams of the various complexes of each element with pH and total concentration of sulphosalicylate parameters are given.  相似文献   

18.
High Spin Manganese(II) Phthalocyanines: Preparation and Spectroscopical Properties of Acidophthalocyaninatomanganate(II) Acidophthalocyaninatomanaganese(III) is reduced by boranate, thioacetate or hydrogensulfide to yield acidophthalo-cyaninatomanganate(II) ([Mn(X)Pc2?]?; X = Cl, Br, NCO, NCS) being isolated as tetra(n-butyl)ammonium salt. In the cyclovoltammogram of [Mn(NCO)Pc2?]? the halv-wave potential for the redoxcouple MnII/MnIII is at ?0.13 V, that of the first ring reduction at ?0.99 V. The magnetic moments are indicative of high-spin 6A1 ground states: μMn = 5.84 (NCO), 5.78(Cl), 5.65 (Br), 5.68 μB (NCS). A Curie-like temperature dependence of μMn is observed in the region 300–30 K. Below 30 K an increase in μMn occurs due to weak intermolecular ferromagnetic coupling. The ESR spectra confirm the S = 5/2 ground state with a strong g = 6 resonance observed (AMn = 80 G) as expected for an axially distorted ligand-field. Besides the typical π-π* transitions of the Pc2?-ligand several weak bands are observed in the Uv-vis-n.i.r. spectra at ca. 7.5, 9.1, 14.0 and 19.0 kK that are assigned to trip-multiplet transitions. In resonance with the band at 19.0 kK the Mn? X stretching vibration (v(MnX)) is resonance Raman enhanced: X = NCO: 319, Cl: 286, SCN: 238, Br: 202 cm?1. These vibrational frequencies are confirmed by the f.i.r. spectra. In the case of the thiocyanato-complex probably both forms of bonding of the ambident NCS-ligand are present (v(Mn? NCS): 274 cm?1). The frequencies of the vibrations of the inner (CN)8 ring are reduced by up to 20 cm?1 as compared with those of low spin MnII phthalocyanines.  相似文献   

19.
A phenylenediamine‐capped conjugate of calix[4]arene ( Lamino ) was synthesized by reducing its precursor, Limino , with sodium borohydride in methanol. The Lamino sample binds to anions due to the more flexible and bent conformation of the capped aminophenolic binding core, compared to the precursor Limino . The Lamino sample showed selectivity towards H2PO4? by exhibiting a ratiometric increase in emission by about 11‐fold with a detection limit of (1.2±0.2) μm ((116±20) ppb) over 15 anions studied, including other phosphates, such as P2O74?, adenosine monophosphate (AMP2?), adenosine diphosphate (ADP2?), and adenosine triphosphate (ATP2?). The Lamino sample shows an increase in the absorbance at λ=315 nm in the presence of H2PO4?, CO32?, HCO3?, CH3CO2?, and F?. The 1H NMR spectroscopic titration of Lamino with H2PO4?, F?, and CH3CO2? showed major changes in the phenylene‐capped and salicyl moieties, and thereby, confirming the aminophenolic region as the binding core. However, the binding strength of these anions followed the trend H2PO4?>F??CH3CO2?>HSO4?. The heat changes observed by isothermal titration calorimetry support this trend. The Lamino sample showed reversible sensing towards H2PO4? and F? in the presence of Mg2+ and Ca2+, respectively. NOESY studies of Lamino , in comparison with its anionic complexes, revealed that major conformational changes occurred in the capping region to facilitate the binding of anion. ESI‐MS and the Job's method revealed 1:1 stoichiometry between Lamino and H2PO4? or F?. In the SEM micrographs of Lamino , the spherical particles are converted into spherical aggregates and further form large agglomerates and even branched sheets in the presence of anions, depending upon their binding strength.  相似文献   

20.
The nuclear magnetic relaxation was used to study the state of diheptyl dithiophosphoric acid (D7DTP, L7) anions in water and aqueous solutions of the nonionic surfactant, Ttiton X-100, at 298 K in the presence of paramagnetic probes, Mn2+ions. It was found that increase in the spin-lattice relaxation rate of water protons is caused by formation of simple and mixed (with surfactant) aggregates of D7DTP. Unlike the Mn2+–sodium dodecyl sulfate –Triton X-100 system, studied previously an influence of a probe concentration was found at surfactant concentration close to the CMC. It was suggested that two types of mixed species containing diheptyl dithiophosphate ions, Mn(II), and nonionic surfactant can be formed: micellar aggregates, {Mn(L7)2(TX)}, and polynuclear associates, [Mn x (L7) y (tx) z ]. The associates likely contain surfactant in the form of monomers (tx).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号