首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Static electricity has an important effect on gas–solid fluidized bed reactor fluidization performance. In the process of fluidization, electrostatic interaction between particles will obviously accelerate particle agglomerate formation, which consequently reduces the fluidization performance. Pulsed gas flow injection is an efficient method to enhance particle mixing, thereby weakening the occurrence of particle agglomerate. In this study, the two-dimensional hybrid pulsed fluidized bed is established. The flow characteristics are studied by using the coupled CFD-DEM numerical simulation model considering electrostatic effects. Influences of different pulsed frequencies and gas flow ratios on fluidized bed fluidization performance are investigated to obtain the optimal pulsed gas flow condition. Results show that in the presence of static electricity, the bubble generation position is lower, which is conducive to the particle flow. Pulsed gas flow can increase the particle velocity and improve the diffusion ability. The bubble generation time is different at different frequencies, and the frequency of 2.5 Hz has the most obvious effect on the flow characteristics. Different gas flow ratios have significant impacts on the particle movement amplitude. When the pulse gas flow accounts for a large ratio, the particle agglomerate tends to be larger. Therefore, in order to improve the fluidization effect, the ratio of pulsed gas flow to stable gas flow should be appropriately reduced to 0.5 or less.  相似文献   

2.
Hydrodynamic characteristics of fluidization in a conical or tapered bed differ from those in a columnar bed because the superficial velocity in the bed varies in the axial direction. Fixed and fluidized regions could coexist and sharp variations in pressure drop could occur, thereby giving rise to a noticeable pressure drop-flow rate hysteresis loop under incipient fluidization conditions. To explore these unique properties, several experiments were carried out using homogeneous, well-mixed, ternary mixtures with three dif- ferent particle sizes at varying composition in gas-solid conical fluidized beds with varying cone angles. The hydrodynamic characteristics determined include the minimum fluidization velocity, bed fluctuation, and bed expansion ratios. The dependence of these quantities on average particle diameter, mass fraction of the fines in the mixture, initial static bed height, and cone angle is discussed. Based on dimensional analysis and factorial design, correlations are developed using the system parameters, i.e. geometry of the bed (cone angle), particle diameter, initial static bed height, density of the solid, and superficial velocity of the fluidizing medium. Experimental values of minimum fluidization velocity, bed fluctuation, and bed expansion ratios were found to agree well with the developed correlations.  相似文献   

3.
This paper presents experimental and computational studies on the flow behavior of a gas-solid fluidized bed with disparately sized binary particle mixtures. The mixing/segregation behavior and segregation efficiency of the small and large particles are investigated experimentally.Particle composition and operating conditions that influence the fluidization behavior of mixing/segregation are examined. Based on the granular kinetics theory, a multi-fluid CFD model has been developed and verified against the experimental results. The simulation results are in reasonable agreement with experimental data. The results showed that the smaller particles are found near the bed surface while the larger particles tend to settle down to the bed bottom in turbulent fluidized bed. However, complete segregation of the binary particles does not occur in the gas velocity range of 0.695--0.904 m/s. Segregation efficiency increases with increasing gas velocity and mean residence time of the binary particles, but decreases with increasing the small particle concentration. The calculated results also show that the small particles move downward in the wall region and upward in the core. Due to the effect of large particles on the movement of small particles, the small particles present a more turbulent velocity profile in the dense phase than that in the dilute phase.  相似文献   

4.
A new type of liquid–solid fluidized bed, named circulating conventional fluidized bed (CCFB) which operates below particle terminal velocity was proposed and experimentally studied. The hydrodynamic behavior was systematically studied in a liquid–solid CCFB of 0.032 m I.D. and 4.5 m in height with five different types of particles. Liquid–solid fluidization with external particle circulation was experimentally realized below the particle terminal velocity. The axial distribution of local solids holdup was obtained and found to be fairly uniform in a wide range of liquid velocities and solids circulation rates. The average solids holdup is found to be significantly increased compared with conventional fluidization at similar conditions. The effect of particle properties and operating conditions on bed behavior was investigated as well. Results show that particles with higher terminal velocity have higher average solids holdup.  相似文献   

5.
This paper presents experimental and computational studies on the flow behavior of a gas-solid fluidized bed with disparately sized binary particle mixtures. The mixing/segregation behavior and segregation efficiency of the small and large particles are investigated experimentally. Particle composition and operating conditions that influence the fluidization behavior of mixing/segregation are examined. Based on the granular kinetics theory, a multi-fluid CFD model has been developed and verified against the experimental results. The simulation results are in reasonable agreement with experimental data. The results showed that the smaller particles are found near the bed surface while the larger particles tend to settle down to the bed bottom in turbulent fluidized bed. However, complete segregation of the binary particles does not occur in the gas velocity range of 0.695-0.904 m/s. Segregation efficiency increases with increasing gas velocity and mean residence time of the binary particles, but decreases with increasing the small particle concentration. The calculated results also show that the small particles move downward in the wall region and upward in the core. Due to the effect of large particles on the movement of small particles, the small particles present a more turbulent velocity profile in the dense phase than that in the dilute phase.  相似文献   

6.
Supercritical water (SCW) fluidized bed is a new reactor concept for hydrogen production from biomass or coal gasification. In this paper, a comparative study on flow structure and bubble dynamics in a supercritical water fluidized bed and a gas fluidized bed was carried out using the discrete element method (DEM). The results show that supercritical water condition reduces the incipient fluidization velocity, changes regime transitions, i.e. a homogeneous fluidization was observed when the superficial velocity is in the range of the minimum fluidization velocity and minimum bubbling velocity even the solids behave as Geldart B powders in the gas fluidized bed. Bubbling fluidization in the supercritical water fluidized bed was formed after superficial velocity exceeds the minimum bubbling velocity, as in the gas fluidized bed. Bubble is one of the most important features in fluidized bed, which is also the emphasis in this paper. Bubble growth was effectively suppressed in the supercritical water fluidized bed, which resulted in a more uniform flow structure. By analyzing a large number of bubbles, bubble dynamic characteristics such as diameter distribution, frequency, rising path and so on, were obtained. It is found that bubble dynamic characteristics in the supercritical water fluidized bed differ a lot from that in the gas fluidized bed, and there is a better fluidization quality induced by the bubble dynamics in the supercritical water fluidized bed.  相似文献   

7.
《中国颗粒学报》2005,3(1-2):26
The unique characteristics of gas-solids two-phase flow and fluidization in terms of the flow structures and the apparent behavior of particles and fluid-particle interactions are closely linked to physical properties of the particles, operating conditions and bed configurations. Fluidized beds behave quite differently when solid properties, gas velocities or vessel geometries are varied. An understanding of hydrodynamic changes and how they, in turn, influence the transfer and reaction characteristics of chemical and thermal operations by variations in gas-solid contact, residence time, solid circulation and mixing and gas distribution is very important for the proper design and scale-up of fluidized bed reactors. In this paper, rather than attempting a comprehensive survey, we concentrate on examining some important positive and negative impacts of particle sizes, bubbles, clusters and column walls on the physical and chemical aspects of chemical reactor performance from the engineering application point of view with the aim of forming an adequate concept for guiding the design of multiphase fluidized bed chemical reactors.One unique phenomenon associated with particle size is that fluidized bed behavior does not always vary monotonically with changing the average particle size. Different behaviors of particles with difference sizes can be well understood by analyzing the relationship between particle size and various forces. For both fine and coarse particles, too narrow a distribution is generally not favorable for smooth fluidization. A too wide size distribution, on the other hand, may lead to particle segregation and high particle elutriation. Good fluidization performance can be established with a proper size distribution in which inter-particle cohesive forces are reduced by the lubricating effect of fine particles on coarse particles for Type A, B and D particles or by the spacing effect of coarse particles or aggregates for Type C powders.Much emphasis has been paid to the negative impacts of bubbles, such as gas bypassing through bubbles, poor bubble-to-dense phase heat & mass transfer, bubble-induced large pressure fluctuations, process instabilities, catalyst attrition and equipment erosion, and high entrainment of particles induced by erupting bubbles at the bed surface. However, it should be noted that bubble motion and gas circulation through bubbles, together with the motion of particles in bubble wakes and clouds, contribute to good gas and solids mixing. The formation of clusters can be attributed to the movement of trailing particles into the low-pressure wake region of leading particles or clusters. On one hand, the existence of down-flowing clusters induces strong solid back-mixing and non-uniform radial distributions of particle velocities and holdups, which is undesirable for chemical reactions. On the other hand, the formation of clusters creates high solids holdups in the riser by inducing internal solids circulations, which are usually beneficial for increasing concentrations of solid catalysts or solid reactants.Wall effects have widely been blamed for complicating the scale-up and design of fluidized-bed reactors. The decrease in wall friction with increasing the column diameter can significantly change the flow patterns and other important characteristics even under identical operating conditions with the same gas and particles. However, internals, which can be considered as a special wall, have been used to improve the fluidized bed reactor performance.Generally, desirable and undesirable dual characteristics of interaction between particles and fluid are one of the important natures of multiphase flow. It is shown that there exists a critical balance between those positive and negative impacts. Good fluidization quality can always be achieved with a proper choice of right combinations of particle size and size distribution, bubble size and wall design to alleviate the negative impacts.  相似文献   

8.
Pressurized fluidized beds have been developed in quite a few industrial applications because of intensified heat and mass transfer and chemical reaction. The bubble behaviors under elevated pressure, strongly influencing the fluidization and reaction conversion of the whole system, are of great research significance. In this work, the bubble behaviors of Geldart B particle in a pseudo two-dimensional (2D) pressurized fluidized bed were experimentally studied based on digital image analysis technique. The effects of pressure and fluidization gas velocity on the general bubble behaviors (i.e., size, shape and spatial distribution) and the dynamic characteristics, such as the time-evolution of voidage distribution and local flow regimes, were comprehensively investigated. Results show that increasing pressure reduces the stability of bubbles and facilitates gas passing through the emulsion phase, resulting in the “smoother” fluidization state with smaller bubbles and declined bubble fraction and standard deviation. The equivalent bubble diameter and bubble aspect ratio increase with the increasing gas velocity while decrease as pressure rises. The elevated pressure reduces bubbles extension in the vertical direction, prohibits the “short pass” of fluidization gas in large oblong bubbles/slugs and benefits the gas–solid interaction. The flow regimes variation with gas velocity is affected by the elevated pressure, and demonstrates different features in different local positions of the bed.  相似文献   

9.
Slugging represents one of the major regimes in fluidization, which occurs in small diameter beds with large bed height-to-diameter ratio or in large diameter beds with internals that resemble multiple small diameter fluidized beds. Slug types include round-nosed slug, wall slug and square-nosed slug. Studies of the slugs have been mainly focused on round-nosed or wall slugs known as half slug, typically occurring in Geldart group A particle fluidization. The square-nosed slug typically occurring for Geldart group D particles appears to be regarded as simple in its structure. The Electrical Capacitance Volume Tomography (ECVT) imaging of the square-nosed slugging phenomena conducted in this study reveals otherwise. That is the structure of the square-nosed slug is, in fact, complex, particularly with respect to its dynamic variation in fluidization. More broadly, this study examines experimentally the hydrodynamic characteristics of the square-nosed fluidization regime. Specifically, simultaneous measurements from multiple ECVT sensors provide non-invasive, continuous, 3-dimensional imaging of the entire flow region of the slugging bed and hence enabling the dynamic characterization of the evolution of the slugs. The analysis of the 3D images reconstructed for real-time gas–solid volume fraction profile of the slugging fluidized bed indicates that there are three different zones, namely, the bottom fluidization zone, the gas slug zone, and the solid slug zone, co-existing in the bed. The three zones present different hydrodynamic characteristics during the slug evolution. It is found that varying the gas velocity of the slugging bed mainly varies the maximum length of the gas slug zone, while it only has a minor effect on the lengths of the bottom fluidization zone and solid slug zone. It also has an insignificant effect on the solid volume fraction of the three zones.  相似文献   

10.
Bottom bed regimes in a circulating fluidized bed boiler   总被引:1,自引:0,他引:1  
This paper extends previous work on the fluidization regimes of the bottom bed of circulating flyidized bed (CFB) boilers. Pressure measurements were performed to obtain the time-average bottom bed voidage and to study the bed pressure fluctuations. The measurements were carried out in a 12 MWth CFB boiler operated at 850°C and also under ambient conditions (40°C). Two bubbling regimes were identified: a “single bubble regime” with large single bubbles present at low fluidization velocities, and, at high fluidization velocities, an “exploding bubble regime” with bubbles often stretching all the way from the air distributor to the surface of the bottom bed. The exploding bubble regime results in a high through-flow of gas, indirectly seen from the low average voidage of the bottom bed, which is similar to that of a stationary fluidized bed boiler, despite the higher gas velocities in the CFB boiler. Methods to determine the fluidization velocity at the transition from the single to the exploding bubble regime are proposed and discussed. The transition velocity increases with an increase in particle size and bed height.  相似文献   

11.
This paper reports on the hydrodynamics of a bubble-induced inverse fluidized bed reactor, using a nanobubble tray gas distributor, where solid particles are fluidized only by an upward gas flow. Increasing the gas velocity, the fixed layer of particles initially packed at the top of the liquid starts to move downwards, due to the rise of bubbles in this system, and then gradually expands downwards until fully suspended. The axial local pressure drops and standard deviation were examined to delineate the flow regime comprehensively under different superficial gas velocities. Four flow regimes (fixed bed regime, initial fluidization regime, expanded regime, and post-homogeneous regime) were observed and three transitional gas velocities (the initial fluidization velocity, minimum fluidization velocity, and homogeneous fluidization velocity) were identified to demarcate the flow regime. Three correlations were developed for the three transitional velocities. As the fine bubbles generated from the nanobubble tray gas distributor are well distributed in the entire column, the bed expansion process of the particles is relatively steady.  相似文献   

12.
The hydrodynamic characteristics of a rectangular gas-driven inverse liquid-solid fluidized bed (GDFB) using particles of different diameters and densities were investigated in detail. Rising gas bubbles cause a liquid upflow in the riser portion, enabling a liquid downflow that causes an inverse fluidization in the downer portion. Four flow regimes (fixed bed regime, initial fluidization regime, complete fluidization regime, and circulating fluidization regime) and three transition gas velocities (initial fluidization gas velocity, minimum fluidization gas velocity, and circulating fluidization gas velocity) were identified via visual observation and by monitoring the variations in the pressure drop. The axial local bed voidage (ε) of the downer first decreases and then increases with the increase of the gas velocity. Both the liquid circulation velocity and the average particle velocity inside the downer increase with the increase of the gas velocity in the riser, but decrease with the particle loading. An empirical formula was proposed to successfully predict the Richardson-Zaki index “n”, and the predicted ε obtained from this formula has a ±5% relative error when compared with the experimental ε.  相似文献   

13.
The behavior of the solid phase in the upper zone of a circulating fluidized bed riser was studied using a phase Doppler anemometer. Glass particles of mean diameter 107 μm and superficial gas velocities Ug covering the turbulent and the beginning of the fast fluidization regime were investigated. Three static bed heights were tested. Ascending and descending particles were found co-existing under all operating conditions tested, and at all measurement locations. Superficial gas velocity proved/happened to have a larger effect on descending particles at the wall and on ascending particles in the central region. Transversal particle velocities in both directions (toward the center and toward the wall) behaved relatively equivalently, with only slight difference observed at the wall. However, observation of the number of particles moving in either transversal direction showed a change in bed structure when increasing Ug. Furthermore, a balance was constantly observed between the core zone and the annulus zone where the mutual mass transfer between these two zones occurred continuously. Transition from a slow to a fast particle motion was accompanied by a transition to high levels of velocity fluctuations, and was found corresponding to the appearance of significant solid particle flow rate.  相似文献   

14.
Vibrational energy was introduced to a dense medium gas–solid fluidized bed to improve the separation performance of 1–6 mm fine low-rank coal. The setup was termed a vibrated gas–solid fluidized bed and could provide a stable fluidization state and uniform density distribution for dry coal beneficiation by the transfer of vibrational energy and the interaction between vibrations and the gas phase. Favorable segregation of the ash content of the 1–6-mm-sized lignite samples is achieved under suitable operating conditions. Higher yields of cleaning coal were acquired when the ash content was reduced. The probable error values were 0.065 and 0.055 at separating densities of 1.68 and 1.75 g/cm3 for the 1–3- and 3–6-mm-sized lignite samples, respectively. Effective beneficiation of 1–6-mm-sized fine lignite could be achieved using the vibrated gas–solid fluidized bed, which provides an alternative technique for the separation of fine low-rank coal in arid areas.  相似文献   

15.
The present paper describes the statistical modeling and optimization of a multistage gas-solid fluidized bed reactor for the control of hazardous pollutants in flue gas.In this work,we study the hydrodynamics of the pressure drop and minimum fluidization velocity.The hydrodynamics of a three-stage fluidized bed are then compared with those for a single-stage unit.It is observed that the total pressure drop over all stages of the three-stage fluidized bed is less than that of an identical single-stage system.However,the minimum fluidization velocity is higher in the single-stage unit.Under identical conditions,the minimum fluidization velocity is highest in the top bed,and lowest in the bottom bed.This signifies that the behavior of solids changes from a well-mixed flow to a plug-flow,with intermediate behavior in the middle bed.  相似文献   

16.
Fluidized Carbon Bed Cooling (FCBC) is an innovative investment casting process for directional solidification of superalloy components. It takes advantage of a fluidized bed with a base of small glassy carbon beads for cooling and other low-density particles that form an insulating layer by floating to the bed surface. This so-called “Dynamic Baffle” protects the fluidized bed from the direct heat input from the high-temperature heating zone and provides the basis for an improved bed microstructure. The prerequisites for a stable casting process are stable fluidization conditions where neither collapse of the bed nor particle blow out at excessive bubble formation occur.This work aimed to investigate the fluidization behavior of spherical carbon bed material in argon and air at temperatures between 20 to 350 °C. Systematic studies at reduced pressures using the FCBC prototype device were performed to understand the stable fluidization conditions at all stages of the investment casting process. The particle shape factor and size distribution characterization and the measurement of the powder’s minimum fluidization velocity and bed voidage show that this material can be fully utilized as a cooling and buoyancy medium during the FCBC process.  相似文献   

17.
A magnetically stabilized fluidized bed (MSFB, φ 500mm x 2100mm) was designed to study dust removal from flue gas. Based on the mechanism of dust removal in a fixed bed, the effects on collection efficiency of magnetic field intensity, ratio of flue gas velocity to minimum fluidization velocity, bed height, and particle average diameter, were investigated. Then feasible methods for MSFB to better remove dust were proposed. Over 95% of dust removal with MSFB can be achieved, when stable fluidization is maintained and when magnetic particles are frequently renewed.  相似文献   

18.
Hydrodynamics of carbon dioxide fluid-particle mixtures are predicted using a low density ratio-based kinetic theory of granular flow in high pressure carbon dioxide fluid fluidized beds. A coexistence of particle waves and particle aggregates exists along bed height. The threshold to identify the occurrence of particle aggregates is suggested based on standard deviation of solid volume fractions in aggregative fluidization. The existence time fractions and frequencies of particle aggregates are predicted along axial direction. The effect of carbon dioxide fluid temperature and pressure on volume fraction and velocity distributions are analyzed at different inlet carbon dioxide velocities and particle densities in high pressure carbon dioxide fluidized beds. Simulated results indicate that the carbon dioxide-particles fluidization transits from particulate to aggregative states with the increase of inlet carbon dioxide velocities. The computed fluid volume fractions and heterogeneity indexes are close to the measurements in a high pressure carbon dioxide fluidized bed.  相似文献   

19.
In this work, a new drag model for TFM simulation in gas-solid bubbling fluidized beds was proposed, and a set of equations was derived to determine the meso-scale structural parameters to calculate the drag characteristics of Geldart-B particles under low gas velocities. In the new model, the meso-scale structure was characterized while accounting for the bubble and meso-scale structure effects on the drag coefficient. The Fluent software, incorporating the new drag model, was used to simulate the fluidization behavior. Experiments were performed in a Plexiglas cylindrical fluidized bed consisting of quartz sand as the solid phase and ambient air as the gas phase. Comparisons based on the solids hold-up inside the fluidized bed at different superficial gas velocities, were made between the 2D Cartesian simulations, and the experimental data, showing that the results of the new drag model reached much better agreement with exoerimental data than those of the Gidasoow dra~ model did.  相似文献   

20.
Fluidized bed agglomeration is a process commonly used to construct powdered food or pharmaceutical products to improve their instant properties. This works analyzes the influence of a wide range of operating parameters (i.e., fluidization air flow rate, temperature, and liquid injection rate) on growth rate, process stability, and product particle structure. Different granulator configurations (i.e., top spray, Wurster coater, spouted bed) are compared using identical process parameters. The impacts of both process variables and granulator geometry on the fluidization regime, the particle and collision dynamics, and the resulting product structure and corresponding properties are studied in detailed simulations using a discrete particle model (DPM) and lab-scale agglomeration experiments with amorphous dextrose syrup (DE21). The combination of numerical and experimental results allows to correlate the kinetics of micro-scale particle interactions and the final product properties (i.e., agglomerate structure and strength). In conclusion, detailed DPM simulations are proven as a valuable tool for knowledge-based product design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号