首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let \({\mathcal{T}}\) be a triangular algebra over a commutative ring \({\mathcal{R}}\), \({\xi}\) be an automorphism of \({\mathcal{T}}\) and \({\mathcal{Z}_{\xi}(\mathcal{T})}\) be the \({\xi}\)-center of \({\mathcal{T}}\). Suppose that \({\mathfrak{q}\colon \mathcal{T}\times \mathcal{T}\longrightarrow \mathcal{T}}\) is an \({\mathcal{R}}\)-bilinear mapping and that \({\mathfrak{T}_{\mathfrak{q}}\colon \mathcal{T}\longrightarrow \mathcal{T}}\) is a trace of \({\mathfrak{q}}\). The aim of this article is to describe the form of \({\mathfrak{T}_{\mathfrak{q}}}\) satisfying the commuting condition \({[\mathfrak{T}_{\mathfrak{q}}(x), x]_{\xi}=0}\) (resp. the centralizing condition \({[\mathfrak{T}_{\mathfrak{q}}(x), x]_{\xi}\in \mathcal{Z}_\xi(\mathcal{T})}\)) for all \({x\in \mathcal{T}}\). More precisely, we will consider the question of when \({\mathfrak{T}_{\mathfrak{q}}}\) satisfying the previous condition has the so-called proper form.  相似文献   

2.
For a commutative C*-algebra \({\mathcal {A}}\) with unit e and a Hilbert \({\mathcal {A}}\)-module \({\mathcal {M}}\), denote by End\(_{{\mathcal {A}}}({\mathcal {M}})\) the algebra of all bounded \({\mathcal {A}}\)-linear mappings on \({\mathcal {M}}\), and by End\(^*_{{\mathcal {A}}}({\mathcal {M}})\) the algebra of all adjointable mappings on \({\mathcal {M}}\). We prove that if \({\mathcal {M}}\) is full, then each derivation on End\(_{{\mathcal {A}}}({\mathcal {M}})\) is \({\mathcal {A}}\)-linear, continuous, and inner, and each 2-local derivation on End\(_{{\mathcal {A}}}({\mathcal {M}})\) or End\(^{*}_{{\mathcal {A}}}({\mathcal {M}})\) is a derivation. If there exist \(x_0\) in \({\mathcal {M}}\) and \(f_0\) in \({\mathcal {M}}^{'}\), such that \(f_0(x_0)=e\), where \({\mathcal {M}}^{'}\) denotes the set of all bounded \({\mathcal {A}}\)-linear mappings from \({\mathcal {M}}\) to \({\mathcal {A}}\), then each \({\mathcal {A}}\)-linear local derivation on End\(_{{\mathcal {A}}}({\mathcal {M}})\) is a derivation.  相似文献   

3.
We consider a system of reaction–diffusion equations describing the reversible reaction of two species \({\mathcal{U}}\), \({\mathcal{V}}\) forming a third species \({\mathcal{W}}\) and vice versa according to mass action law kinetics with arbitrary stoichiometric coefficients (equal or larger than one). Firstly, we prove existence of global classical solutions via improved duality estimates under the assumption that one of the diffusion coefficients of \({\mathcal{U}}\) or \({\mathcal{V}}\) is sufficiently close to the diffusion coefficient of \({\mathcal{W}}\). Secondly, we derive an entropy entropy-dissipation estimate, that is a functional inequality, which applied to global solutions of these reaction–diffusion systems proves exponential convergence to equilibrium with explicit rates and constants.  相似文献   

4.
Given semisimple commutative Banach algebras \({\mathcal{A}}\) and \({\mathcal{B}}\) and a norm decreasing homomorphism \({\mathcal{T} : \mathcal{B} \rightarrow \mathcal{B}}\), we characterize the multipliers of the perturbed product Banach algebra \({\mathcal{A}\times_T \mathcal{B}}\). As an application it is shown that \({\mathcal{A}\times_T \mathcal{B}}\) has the Bochner–Schoenberg–Eberlein property if and only if both \({\mathcal{A}}\) and \({\mathcal{B}}\) have this property.  相似文献   

5.
We generalise in three different directions two well-known results in universal algebra. Grätzer, Lakser and P?onka proved that independent subvarieties \({\mathcal{V}_{1}, \mathcal{V}_{2}}\) of a variety \({\mathcal{V}}\) are disjoint and such that their join \({\mathcal{V}_{1} \vee \mathcal{V}_{2}}\) (in the lattice of subvarieties of \({\mathcal{V}}\)) is their direct product \({\mathcal{V}_{1} \times \mathcal{V}_{2}}\) . Jónsson and Tsinakis provided a partial converse to this result: if \({\mathcal{V}}\) is congruence permutable and \({\mathcal{V}_{1}, \mathcal{V}_{2}}\) are disjoint, then they are independent (and so \({\mathcal{V}_{1} \vee \mathcal{V}_{2} = \mathcal{V}_{1} \times \mathcal{V}_{2}}\)). We show that (i) if \({\mathcal{V}}\) is subtractive, then Jónsson’s and Tsinakis’ result holds under some minimal assumptions; (ii) if \({\mathcal{V}}\) satisfies some weakened permutability conditions, then disjointness implies a generalised notion of independence and \({\mathcal{V}_{1} \vee \mathcal{V}_{2}}\) is the subdirect product of \({\mathcal{V}_{1}}\) and \({\mathcal{V}_2}\) ; (iii) the same holds if \({\mathcal{V}}\) is congruence 3-permutable.  相似文献   

6.
Let \({\mathcal{L} = \sum_{i=1}^m X_i^2}\) be a real sub-Laplacian on a Carnot group \({\mathbb{G}}\) and denote by \({\nabla_\mathcal{L} = (X_1,\ldots,X_m)}\) the intrinsic gradient related to \({\mathcal{L}}\). Our aim in this present paper is to analyze some features of the \({\mathcal{L}}\)-gauge functions on \({\mathbb{G}}\), i.e., the homogeneous functions d such that \({\mathcal{L}(d^\gamma) = 0}\) in \({\mathbb{G} \setminus \{0\}}\) , for some \({\gamma \in \mathbb{R} \setminus \{0\}}\). We consider the relation of \({\mathcal{L}}\)-gauge functions with: the \({\mathcal{L}}\)-Eikonal equation \({|\nabla_\mathcal{L} u| = 1}\) in \({\mathbb{G}}\); the Mean Value Formulas for the \({\mathcal{L}}\)-harmonic functions; the fundamental solution for \({\mathcal{L}}\); the Bôcher-type theorems for nonnegative \({\mathcal{L}}\)-harmonic functions in “punctured” open sets \({\dot \Omega:= \Omega \setminus \{x_0\}}\).  相似文献   

7.
We use a certain class of well-monotone covers on a quasi-uniform space \({(X, \mathcal{U})}\) to investigate whether there are quasi-uniformities \({\mathcal{V}}\) that are distinct from \({\mathcal{U}}\), but have the property that the associated Hausdorff quasi-uniformities \({\mathcal{U}_H}\) and \({\mathcal{V}_H}\) on the hyperspace of X have the same underlying topologies.  相似文献   

8.
Suppose that \({\mathcal {M}}\) is a countably decomposable type II\({_1}\) von Neumann algebra and \({\mathcal {A}}\) is a separable, non-nuclear, unital C\({^*}\)-algebra. We show that, if \({\mathcal {M}}\) has Property \({\Gamma}\), then the similarity degree of \({\mathcal {M}}\) is less than or equal to 5. If \({\mathcal {A}}\) has Property c\({^*}\)-\({\Gamma}\), then the similarity degree of \({\mathcal {A}}\) is equal to 3. In particular, the similarity degree of a \({\mathcal {Z}}\)-stable, separable, non-nuclear, unital C\({^*}\)-algebra is equal to 3.  相似文献   

9.
We consider the Multilinear set \({\mathcal {S}}\) defined as the set of binary points (xy) satisfying a collection of multilinear equations of the form \(y_I = \prod _{i \in I} x_i\), \(I \in {\mathcal {I}}\), where \({\mathcal {I}}\) denotes a family of subsets of \(\{1,\ldots , n\}\) of cardinality at least two. Such sets appear in factorable reformulations of many types of nonconvex optimization problems, including binary polynomial optimization. A great simplification in studying the facial structure of the convex hull of the Multilinear set is possible when \({\mathcal {S}}\) is decomposable into simpler Multilinear sets \({\mathcal {S}}_j\), \(j \in J\); namely, the convex hull of \({\mathcal {S}}\) can be obtained by convexifying each \({\mathcal {S}}_j\), separately. In this paper, we study the decomposability properties of Multilinear sets. Utilizing an equivalent hypergraph representation for Multilinear sets, we derive necessary and sufficient conditions under which \({\mathcal {S}}\) is decomposable into \({\mathcal {S}}_j\), \(j \in J\), based on the structure of pair-wise intersection hypergraphs. Our characterizations unify and extend the existing decomposability results for the Boolean quadric polytope. Finally, we propose a polynomial-time algorithm to optimally decompose a Multilinear set into simpler subsets. Our proposed algorithm can be easily incorporated in branch-and-cut based global solvers as a preprocessing step for cut generation.  相似文献   

10.
The quasiorders of an algebra (A, F) constitute a common generalization of its congruences and compatible partial orders. The quasiorder lattices of all algebras defined on a fixed set A ordered by inclusion form a complete lattice \({\mathcal{L}}\). The paper is devoted to the study of this lattice \({\mathcal{L}}\). We describe its join-irreducible elements and its coatoms. Each meet-irreducible element of \({\mathcal{L}}\) being determined by a single unary mapping on A, we characterize completely those which are determined by a permutation or by an acyclic mapping on the set A. Using these characterizations, we deduce several properties of the lattice \({\mathcal{L}}\); in particular, we prove that \({\mathcal{L}}\) is always tolerance-simple.  相似文献   

11.
Let \({\mathcal {N}}\) be a nest and let \({\mathcal {L}}\) be a weakly closed Lie ideal of the nest algebra \({\mathcal {T} (\mathcal {N})}\) . We explicitly construct the greatest weakly closed associative ideal \({\mathcal {J} (\mathcal {L})}\) contained in \({\mathcal {L}}\) and show that \({\mathcal {J} (\mathcal {L}) \subseteq \mathcal {L} \subseteq \mathcal {J} (\mathcal {L})\oplus {\breve{\mathcal{D}}} (\mathcal {L})}\) , where \({{\breve{\mathcal{D}}}} (\mathcal {L})\) is an appropriate subalgebra of the diagonal \({\mathcal {D} (\mathcal {N})}\) of the nest algebra \({\mathcal {T} (\mathcal {N})}\) . We show that norm-preserving linear extensions of elements of the dual of \({\mathcal {L}}\) , satisfying a certain condition, are uniquely determined on the diagonal of the nest algebra by the ideal \({\mathcal {J} (\mathcal {L})}\) .  相似文献   

12.
We prove weighted \({L^p}\)-Liouville theorems for a class of second-order hypoelliptic partial differential operators \({\mathcal{L}}\) on Lie groups \({\mathbb{G}}\) whose underlying manifold is \({n}\)-dimensional space. We show that a natural weight is the right-invariant measure \(\check{H}\) of \({\mathbb{G}}\). We also prove Liouville-type theorems for \({C^{2}}\) subsolutions in \({L^{p}(\mathbb{G},\check{H})}\). We provide examples of operators to which our results apply, jointly with an application to the uniqueness for the Cauchy problem for the evolution operator \({\mathcal{L}-\partial_{t}}\).  相似文献   

13.
Let \(G=G(k)\) be a connected reductive group over a p-adic field k. The smooth (and tempered) complex representations of G can be considered as the nondegenerate modules over the Hecke algebra \({\mathcal {H}}={\mathcal {H}}(G)\) and the Schwartz algebra \({\mathcal {S}}={\mathcal {S}}(G)\) forming abelian categories \({\mathcal {M}}(G)\) and \({\mathcal {M}}^t(G)\), respectively. Idempotents \(e\in {\mathcal {H}}\) or \({\mathcal {S}}\) define full subcategories \({\mathcal {M}}_e(G)= \{V : {\mathcal {H}}eV=V\}\) and \({\mathcal {M}}_e^t(G)= \{V : {\mathcal {S}}eV=V\}\). Such an e is said to be special (in \({\mathcal {H}}\) or \({\mathcal {S}}\)) if the corresponding subcategory is abelian. Parallel to Bernstein’s result for \(e\in {\mathcal {H}}\) we will prove that, for special \(e \in {\mathcal {S}}\), \({\mathcal {M}}_e^t(G) = \prod _{\Theta \in \theta _e} {\mathcal {M}}^t(\Theta )\) is a finite direct product of component categories \({\mathcal {M}}^t(\Theta )\), now referring to connected components of the center of \({\mathcal {S}}\). A special \(e\in {\mathcal {H}}\) will be also special in \({\mathcal {S}}\), but idempotents \(e\in {\mathcal {H}}\) not being special can become special in \({\mathcal {S}}\). To obtain conditions we consider the sets \(\mathrm{Irr}^t(G) \subset \mathrm{Irr}(G)\) of (tempered) smooth irreducible representations of G, and we view \(\mathrm{Irr}(G)\) as a topological space for the Jacobson topology defined by the algebra \({\mathcal {H}}\). We use this topology to introduce a preorder on the connected components of \(\mathrm{Irr}^t(G)\). Then we prove that, for an idempotent \(e \in {\mathcal {H}}\) which becomes special in \({\mathcal {S}}\), its support \(\theta _e\) must be saturated with respect to that preorder. We further analyze the above decomposition of \({\mathcal {M}}_e^t(G)\) in the case where G is k-split with connected center and where \(e = e_J \in {\mathcal {H}}\) is the Iwahori idempotent. Here we can use work of Kazhdan and Lusztig to relate our preorder on the support \(\theta _{e_J}\) to the reverse of the natural partial order on the unipotent classes in G. We finish by explicitly computing the case \(G=GL_n\), where \(\theta _{e_J}\) identifies with the set of partitions of n. Surprisingly our preorder (which is a partial order now) is strictly coarser than the reverse of the dominance order on partitions.  相似文献   

14.
Let \({\mathcal{P} \subset \mathbb{R}^{d}}\) and \({\mathcal{Q} \subset \mathbb{R}^{e}}\) be integral convex polytopes of dimension d and e which contain the origin of \({\mathbb{R}^{d}}\) and \({\mathbb{R}^{e}}\), respectively. We say that an integral convex polytope \({\mathcal{P}\subset \mathbb{R}^{d}}\) possesses the integer decomposition property if, for each \({n\geq1}\) and for each \({\gamma \in n\mathcal{P}\cap\mathbb{Z}^{d}}\), there exist \({\gamma^{(1)}, . . . , \gamma^{(n)}}\) belonging to \({\mathcal{P}\cap\mathbb{Z}^{d}}\) such that \({\gamma = \gamma^{(1)} +. . .+\gamma^{(n)}}\). In the present paper, under some assumptions, the necessary and sufficient condition for the free sum of \({\mathcal{P}}\) and \({\mathcal{Q}}\) to possess the integer decomposition property will be presented.  相似文献   

15.
We are interested in the 3-Calabi-Yau categories \({\mathcal {D}}\) arising from quivers with potential associated to a triangulated marked surface \(\mathbf {S}\) (without punctures). We prove that the spherical twist group \(\mathrm{ST}\) of \({\mathcal {D}}\) is isomorphic to a subgroup (generated by braid twists) of the mapping class group of the decorated marked surface \({\mathbf {S}}_\bigtriangleup \). Here \({\mathbf {S}}_\bigtriangleup \) is the surface obtained from \(\mathbf {S}\) by decorating with a set of points, where the number of points equals the number of triangles in any triangulations of \(\mathbf {S}\). For instance, when \(\mathbf {S}\) is an annulus, the result implies that the corresponding spaces of stability conditions on \({\mathcal {D}}\) are contractible.  相似文献   

16.
As a generalization of completely regular semigroups, which can be written as \({\mathcal{(G \circ RB) \circ S}}\) where \({\mathcal{G}}\), \({\mathcal{RB}}\) and \({\mathcal S}\) are the varieties of groups, rectangular bands and semilattices, respectively, we have replaced \({\mathcal G}\) by the class \({\mathcal M}\) of monoids. This calls for finding the structure of such semigroups, and, as a first step, characterizations.  相似文献   

17.
The class \({\mathcal{CR}}\) of completely regular semigroups equipped with the unary operation of inversion forms a variety whose lattice of subvarieties is denoted by \({\mathcal{L(CR)}}\). The variety \({\mathcal B}\) of all bands induces two relations \({\mathbf{B}^{\land}}\) and \({\mathbf{B}^{\lor} }\) by meet and join with \({\mathcal B}\). Their classes are intervals with lower ends \({\mathcal V_{B^{\land}}}\) and \({\mathcal V_{B^{\lor}}}\), and upper ends \({\mathcal V^{B^{\land}}}\) and \({\mathcal V^{B^{\lor}}}\). These objects induce four operators on \({\mathcal{L(CR)}}\).The cluster at a variety \({\mathcal V}\) is the set of all varieties obtained from \({\mathcal V}\) by repeated application of these four operators. We identify the cluster at any variety in \({\mathcal{L(CR)}}\).  相似文献   

18.
Let \({\{\varphi_n(z)\}_{n\ge0}}\) be a sequence of inner functions satisfying that \({\zeta_n(z):=\varphi_n(z)/\varphi_{n+1}(z)\in H^\infty(z)}\) for every n ≥ 0 and \({\{\varphi_n(z)\}_{n\ge0}}\) have no nonconstant common inner divisors. Associated with it, we have a Rudin type invariant subspace \({\mathcal{M}}\) of \({H^2(\mathbb{D}^2)}\) . We write \({\mathcal{N}= H^2(\mathbb{D}^2)\ominus\mathcal{M}}\) . If \({\{\zeta_n(z)\}_{n\ge0}}\) ia a mutually prime sequence, then we shall prove that \({rank_{\{T^\ast_z,T^\ast_w\}} \mathcal{N}=1}\) and \({rank_{\{\mathcal{F}^\ast_z\}}(\mathcal{M}\ominus w\mathcal{M})=1}\) , where \({\mathcal{F}_z}\) is the fringe operator on \({\mathcal{M}\ominus w\mathcal{M}}\) .  相似文献   

19.
Let \({\mathcal{R}}\) be a unital commutative ring and \({\mathcal{M}}\) be a 2-torsion free central \({\mathcal{R}}\) -bimodule. In this paper, for \({n \geqq 3}\), we show that every local derivation from M n (\({\mathcal{R}}\)) into M n (\({\mathcal{M}}\)) is a derivation.  相似文献   

20.
Let \({\mathcal {A}}\) and \({\mathcal {B}}\) be commutative Banach algebras, and let \(T:{\mathcal {B}} \rightarrow {\mathcal {A}}\) be an algebra homomorphism with \({\Vert T\Vert }\le 1\). Then T induces a Banach algebra product \(\times _T\) perturbing the coordinatewise product on the Cartesian product space \({\mathcal {A}} \times {\mathcal {B}}\). We show that the spectral properties like spectral extension property, unique uniform norm property, regularity, weak regularity as well as Ditkin’s condition are stable with respect to this product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号