首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 529 毫秒
1.
As an Hg-free lamp using phosphor, the Bi^3+ and EH^3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent intensity of Y2O2S:Eu^3+ was weak, however, considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu^3+,Bi^3+ systems. Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu^3+,Bi^3+ at 147 nm is mainly because the Bi^3+ acts as a medium and effectively performs the energy transfer process: Y^3+-O^2-→Bi^3+→Eu^3+, while the intense emission band at 172 nm is attributed to the absorption of the characteristic ^1So-^1P1 transition of Bi^3+ and the direct energy transfer from Bi^3+ to Eu^3+. The Y2O2S:Eu^3+,Bi^3+ shows excellent VUV optical properties compared with the commercial (Y,Gd)BO3:Eu^3+. Thus, the Y2O2S:Eu^3+,Bi^3+ can be a potential red VUV-excited candidate applied in Hg-free lamps for backlight of liquid crystal display.  相似文献   

2.
白光LED因亮度高、体积小、寿命长、高效节能、绿色环保等优点而引起人们的广泛关注,但是目前大部分白光LED用荧光粉的不足之处在于其发光效率较低,显色指数较差,色温较高,成本较高等等。红色荧光粉可明显改善白光LED的色温和显色指数,因此红色荧光粉在调制白光LED和改善其显色指数方面具有至关重要的作用。近年来红色荧光粉得到了深入研究,并有不少文献报道了新型的红色荧光粉。本文介绍了Eu3+掺杂的线状红光发射荧光粉、Eu2+掺杂的带状红光发射荧光粉并着重介绍了Eu2+掺杂的新型窄带红光发射荧光粉,以及目前Eu掺杂红色荧光粉发展的不足及其改善方法。  相似文献   

3.
白光LED因亮度高、体积小、寿命长、高效节能、绿色环保等优点而引起人们的广泛关注,但是目前大部分白光LED用荧光粉的不足之处在于其发光效率较低,显色指数较差,色温较高,成本较高等等。红色荧光粉可明显改善白光LED的色温和显色指数,因此红色荧光粉在调制白光LED和改善其显色指数方面具有至关重要的作用。近年来红色荧光粉得到了深入研究,并有不少文献报道了新型的红色荧光粉。本文介绍了Eu~(3+)掺杂的线状红光发射荧光粉、Eu~(2+)掺杂的带状红光发射荧光粉并着重介绍了Eu~(2+)掺杂的新型窄带红光发射荧光粉,以及目前Eu掺杂红色荧光粉发展的不足及其改善方法。  相似文献   

4.
Highly efficient inorganic phosphors are crucial for solid-state lighting. In this paper, a new method of low-temperature self-reduction was used for preparing a highly efficient deep blue-emitting phosphor of Ca[B8O11(OH)4] : Eu2+ (CBH : Eu2+). The crystal structure, morphology, chemical state, and photoluminescence (PL) properties of the CBH : Eu2+ phosphor have been investigated. By using the screened hybrid function (HSE06), the band gap (Eg) of CBH was calculated to be 7.48 eV, which is a necessary condition for achieving high quantum yield phosphors. The experiment results show that almost all the added raw materials of Eu3+ can be reduced to Eu2+ in CBH crystal under a non-reducing atmosphere. The CBH : Eu2+ phosphor shows a broad excitation spectrum centered at 277 and 327 nm in the range of 220 to 400 nm, and a narrow-band emission spectrum centered at 428 nm in the range of 400 to 500 nm, with a full width at half maximum (fwhm) of 42.35 nm. Under UV radiation, the CBH : 2 %Eu2+ exhibits high photoluminescence quantum yield (PLQY=95.0 %), high external quantum efficiency (EQE=31.1 %), and ultra-high color purity (97.6 %). The PL intensity of CBH : 2 %Eu2+ remains 62.6 % of the initial intensity at 150 °C. Finally, the white light-emitting diodes (WLED) fabricated by CBH : 2 %Eu2+, excited by a 365 nm chip, presents outstanding performances with a luminous efficacy (LE) of 13.9 lm/W, a color rendering index (CRI) of 89.4, and a correlated color temperature (CCT) of 5825 K. The above results show that CBH : Eu2+ can be used as a promising blue phosphor for WLED. This new method of low-temperature self-reduction can be applied to design and prepare other new types of highly efficient phosphors.  相似文献   

5.
Three rare earth borosilicate oxyapatites, RE5Si2BO13 (RE=La, Gd, Y), were synthesized via wet chemical method, of which RE5Si2BO13 (RE=Gd, Y) were first reported in this work. In the three oxyapatites, [BO4] and [SiO4] share the [TO4] tetrahedral oxyanion site, and RE3+ ions occupy all metal sites. The differential scanning calorimetry-thermo gravimetry measurements and high temperature powder X-ray diffraction pattern revealed a vitrification process within 300-1200 °C, which was due to the glass-forming nature of borosilicates. From the VUV excitation spectra of Eu3+ and Tb3+ in RE5Si2BO13, the optical band gaps were found to be 6.31, 6.54 and 6.72 eV for RE5Si2BO13 (RE=La, Gd, Y), respectively. The emission and excitation bands of Eu3+ and Tb3+ are discussed relating with their coordination environments. Among the three hosts, Y5Si2BO13 would be the best for Eu3+ and Tb3+-doped phosphors.  相似文献   

6.
As an Hg-free lamp using phosphor,the Bi3+ and Eu3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum uitraviolet(VUV) excitation were investigated.The VUV photolumineseent intensity of Y2O2S:Eu3+ was weak,however,considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu3+,Bi3+ systems.Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu3+,Bi3+ at 147 nm is mainly because the Bi3+ acts as a medium and effectively performs the energy transfer process: Y3+-O2→Bi3+→Eu3+,while the intense emission band at 172 nm is attributed to the absorption of the characteristic 1So-1P1 transition of Bi3+ and the direct energy transfer from Bi3+ to Eu3+.The Y2O2S:Eu3+,Bi3+ shows excellent VUV optical properties compared with the commercial (Y,Gd)BO3:Eu3+.Thus,the Y2O2S:Eu3+,Bi3+ can be a potential red VUV-excited candidate applied in Hg-free lamps for backlight of liquid crystal display.  相似文献   

7.
In this work, a latent energy-transfer process in traditional Eu3+,Tb3+-doped phosphors is proposed and a new class of Eu3+,Tb3+-doped Na4CaSi3O9 (NCSO) phosphors is presented which is enabled by luminescence decay dynamics that optimize the electron-transfer energy process. Relative to other Eu3+,Tb3+-doped phosphors, the as-synthesized Eu3+,Tb3+-doped NCSO phosphors show improved large-scale tunable emission color from green to red upon UV excitation, controlled by the Tb3+/Eu3+ doping ratio. Detailed spectroscopic measurements in the vacuum ultraviolet (VUV)/UV/Vis region were used to determine the Eu3+–O2− charge-transfer energy, 4f–5d transition energies, and the energies of 4f excited multiplets of Eu3+ and Tb3+ with different 4fN electronic configurations. The Tb3+→Eu3+ energy-transfer pathway in the co-doped sample was systematically investigated, by employing luminescence decay dynamics analysis to elucidate the relevant energy-transfer mechanism in combination with the appropriate model simulation. To demonstrate their application potential, a prototype white-light-emitting diode (WLED) device was successfully fabricated by using the yellow luminescence NCSO:0.03Tb3+, 0.05Eu3+ phosphor with high thermal stability and a BaMgAl10O17:Eu2+ phosphor in combination with a near-UV chip. These findings open up a new avenue to realize and develop multifunctional high-performance phosphors by manipulating the energy-transfer process for practical applications.  相似文献   

8.
In this work, a novel whitlockite-structure red-emitting phosphor host, Sr9(Mg0.5Mn0.5)K(PO4)7, is designed and successfully synthesized via a solid-state reaction. Upon X-ray diffractometer Rietveld refinement, it is revealed that this compound possesses compact Eu2+-Mn2+ distance (3.6809 Å) and large intra-Mn2+ distance (8.9905 Å), which is beneficial to the high-efficient Eu2+-Mn2+ energy transfer. By Eu2+ sensitization, our new phosphor exhibits a high-saturated and bright red Mn2+ emission at 620 nm with high color purity of 97.9%. Great emission enhancement up to 245 times than host is achieved by La3+ heterovalent substitution, which can be ascribed to the La3+-induced further structural confinement effect. Moreover, the quantum efficiency is boosted by twofold. The as-fabricated white phosphor-converted LEDs device shows bright warm white light with correlated color temperature (CCT) of 3,487 K, color-rendering index (CRI) of 92.4, and luminous efficacy of 31.59 lm/W. This work proves the feasibility of chemical unit co-substitution strategy in emission engineering of Mn2+-based phosphors, which can stimulate further studies on the red-emitting phosphor materials.  相似文献   

9.
Developing highly efficient cyan-emitting fluorescent materials is essential to bridge the cyan gap in phosphor-converted white light-emitting diodes for full-spectrum white illumination. Here, a Bi-doped cyan phosphor has been reported to solve this gap. The phase purity, photoluminescence emission/excitation spectra, concentration quenching, lifetime decay curves, and temperature-dependent photoluminescence emission spectra were systematically investigated. SrLaGaO4:Bi3+ exhibits a broad excitation band (250–400 nm), which matches with the emission of a commercial near-ultraviolet light-emitting diode chip. The cyan light peaked at 475 nm is observed, which is attributed to the 3P11S0 transition of Bi3+. The thermal quenching experiment was performed, and the activation energy was calculated as 0.36 eV. Finally, full-spectrum white light-emitting diode devices were fabricated using SrLaGaO4:Bi3+ phosphors, commercial blue BaMgAl10O17:Eu2+ phosphor, green (Ba, Sr)2SiO4:Eu2+ phosphor, and red CaAlSiN3:Eu2+ phosphor, which displayed an International Commission on an illumination coordinate of (0.3732, 0.3850), a correlated color temperature of 4290 K, and a color rendering index of 93.2 at a drive current of 20 mA. This result indicates that SrLaGaO4:Bi3+ plays an essential role in bridging the cyan gap, providing new inspiration for applying cyan-emitting phosphors in full-spectrum white lighting.  相似文献   

10.
As an Hg-free lamp using phosphor, the Bi3+ and Eu3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent intensity of Y2O2S:Eu3+ was weak, however, considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu3+,Bi3+ systems. Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu3+,Bi3+ at 147 nm is mainly because the Bi3+ acts as a med...  相似文献   

11.
Searching efficient red phosphors under near‐UV or blue light excitation is practically important to improve the current white light‐emitting diodes (WLEDs). Eu2+‐ and Mn4+‐based red phosphors have been extensively studied. Here we proposed that Eu3+ is also a promising activator when it resides on a noncentrosymmetric coordination site. We proved that Cd4GdO(BO3)3 is a good host, which has a significantly distorted coordination for Eu3+. A careful crystallographic study was performed on the solid solutions of Cd4Gd1‐xEuxO(BO3)3 (0≤x≤1) by Rietveld refinements. The as‐doped Eu3+ cations locate at the Gd3+ site and are well separated by CdO8, CdO6 and BO3 groups; thus, only a slight concentration quenching was observed at ≈80 atom % Eu3+. Most importantly, the parity‐forbidden law of 4f‐4f transitions for Eu3+ are severely depressed, thus the absorptions at ≈393 and ≈465 nm are remarkable. Cd4Gd0.2Eu0.8O(BO3)3 can be pumped by a 395 nm LED chip to give a bright red emission, and when mixed with other commercial blue and green phosphors, it can emit the proper white light (0.3657, 0.3613) with a suitable Ra≈87 and correlated colour temperature ≈4326 K. In‐situ photoluminescence study indicated the low thermal quenching of these borate phosphors, especially under 465 nm excitation. Our case proves the practicability to develop near‐UV excited red phosphors in rare‐earth‐containing borates.  相似文献   

12.
Eu3+-doped triple phosphate Ca8MgR(PO4)7 (R=La, Gd, Y) was synthesized by the general high-temperature solid-state reaction. Excitation and emission spectra as well as luminescence decay were used to characterize the phosphors. Photoluminescence excitation and emission spectra showed that the phosphor could be efficiently excited by UV-vis light from 260 to 450 nm to give bright red emission assigned to the transition (5D07F2) at 612 nm. The richness of the red color has been verified by determining their color coordinates (XY) from the CIE standard.  相似文献   

13.
Vacuum ultraviolet (VUV) excitation and photoluminescent (PL) properties of Eu3+ and Tb3+ ion-doped aluminate phosphors, GdCaAl3O7:Eu3+ and GdCaAl3O7:Tb3+ have been investigated. X-ray diffraction (XRD) patterns indicate that the phosphor GdCaAl3O7 forms without impurity phase at 900 °C. Field emission scanning electron microscopy (FE-SEM) images show that the particle size of the phosphor is less than 3 μm. Upon excitation with VUV irradiation, the phosphors show a strong emission at around 619 nm corresponding to the forced electric dipole 5D07F2 transition of Eu3+, and at around 545 nm corresponding to the 5D47F5 transition of Tb3+. The results reveal that both GdCaAl3O7:RE3+ (RE=Eu, Tb) are potential candidates as red and green phosphors, respectively, for use in plasma display panel (PDP).  相似文献   

14.
A broad excitation band in an excitation spectrum of (Gd,Y)BO3:Eu was observed in the VUV region. It could be considered that this band was composed of two bands at about 160 and 166 nm. The preceding band was assigned to the BO3 group absorption. The later one at about 166 nm could be assigned to the charge transfer (CT) transition of Gd3+-O2−. Such an assignment was deduced from the result that broadbands at around 170 nm for GdAlO3:Eu, and at 183 nm for Gd2SiO5:Eu are due to the CT transition of Gd3+-O2−; this was also identified by CaZr (BO3)2:Eu. Since there are no Gd3+ ions in it; a weak band in the VUV region in the excitation spectrum of Ca0.95ZrEu0.05(BO3)2 was observed. The excitation spectra were overlapped between the CT transition of Gd3+-O2− and BO3 group absorption, and it caused the emission of Eu3+ effectively in the trivalent europium-doped (Gd,Y)BO3 host lattice under 147 nm excitation. Intense broad excitation bands were observed at about 155 nm for YBO3:Eu and at about 153 nm for YAlO3:Eu; it could be attributed to the CT transition between Y3+ and O2−. As a result, under the xenon discharge (147 nm) excitation, the intense emission of Eu3+ in GdBO3 was found to be more convenient just because of the partial substitution of Y3+ for Gd3+.  相似文献   

15.
The polycrystalline powder samples of Eu3+ activated; mixed metal yttrium borate phosphors M3Y2(BO3)4 (M = Ba, Sr) with improved color purity of red emission for plasma display panels (PDPs) were prepared by solution combustion technique. The synthesis is based up on the exothermic reaction between the fuel (Urea) and oxidizer (Ammonium nitrate) .The heat generated in the reaction is utilized for auto combustion of ingredients. The formation of desired product and crystal structure was confirmed by powder XRD technique; while particle morphology was studied using FE-SEM. Samples under 254 and 147 nm excitation showed intense and pure red emission around 613 nm corresponding to the electric dipole 5D0 → 7F2 transition of Eu3+, CIE chromaticity coordinates of synthesized phosphors was found to be (x = 0.67, y = 0.32) close to National Television Standard Committee (NTSC) for red color; found suitable to employ in plasma display panels (PDPs) applications.  相似文献   

16.
K2TiF6:Mn4+ is a highly efficient narrow‐band emission red phosphor with promising applications in white light‐emitting diodes (LEDs) and wide‐gamut displays. Nevertheless, the poor moisture‐resistant properties of this material hinder commercialization. A convenient reverse cation‐exchange strategy is introduced for constructing a core–shell‐structured K2TiF6:Mn4+@K2TiF6 phosphor. The outer K2TiF6 shell acts as a shield for preventing moisture in the air from hydrolyzing the internal MnF62? group, while effectively cutting off the path of energy migration to surface defects, thereby increasing the emission efficiency (especially for the phosphors doped with high concentrations of Mn4+). Employed as a red phosphor, the packaged white LED exhibits an extraordinarily high luminous efficacy of 162 lm W?1, a correlated color temperature (CCT) of 3510 K, and a color rendering index of 93 (Ra). Aging tests performed on this device at 85 °C and 85 % humidity for 480 h retain up to 89 % luminous efficacy. The findings could facilitate commercial application of K2TiF6:Mn4+@K2TiF6 phosphor.  相似文献   

17.
A SrLiAl3N4:Eu2+ (SLA) red phosphor prepared through a high‐pressure solid‐state reaction was coated with an organosilica layer with a thickness of 400–600 nm to improve its water resistance. The observed 4f65d→4f7 transition bands are thought to result from the existence of Eu2+ at two different Sr2+ sites. Luminescence spectra at 10 K revealed two zero‐phonon lines at 15377 (for Eu(Sr1)) and 15780 cm?1 (for Eu(Sr2)). The phosphor exhibited stable red emission under high pressure up to 312 kbar. The configurational coordinate diagram gave a theoretical explanation for the Eu2+/3+ result. The coated samples showed excellent moisture resistance while retaining an external quantum efficiency (EQE) of 70 % of their initial EQE after aging for 5 days under harsh conditions. White‐light‐emitting diodes of the SLA red phosphor and a commercial Y3Al5O12:Ce3+ yellow phosphor on a blue InGaN chip showed high color rendition (CRI=89, R9=69) and a low correlated color temperature of 2406 K.  相似文献   

18.
通过高温固相反应合成了新型的蓝色荧光粉Sr7Zr(PO4)6xEu2+。通过X射线粉末衍射(XRD)、紫外可见(UV-Vis)吸收光谱、荧光光谱研究了Sr7Zr(PO4)6xEu2+材料的相纯度及荧光性质。结果表明,Eu2+掺杂获得的Sr7Zr(PO4)6xEu2+荧光粉为纯相,且200~400 nm范围内的近紫外(NUV)光均能对其进行有效的激发。在315 nm的激发下,Sr7Zr(PO4)6xEu2+荧光粉发射出峰值位于415 nm左右的蓝光,且Eu2+在Sr7Zr (PO4)6基质中的最佳掺杂浓度为0.05,相应的CIE色度坐标为(0.164,0.021),比商用BaMgAl10O17∶Eu2+(BAM)蓝色荧光粉具有更高的色纯度。  相似文献   

19.
A novel orange‐yellow‐emitting Ba3Gd(PO4)3:x Eu2+,y Mn2+ phosphor is prepared by high‐temperature solid‐state reaction. The crystal structure of Ba3Gd(PO4)3:0.005 Eu2+,0.04 Mn2+ is determined by Rietveld refinement analysis on powder X‐ray diffraction data, which shows that the cations are disordered on a single crystallographic site and the oxygen atoms are distributed over two partially occupied sites. The photoluminescence excitation spectra show that the developed phosphor has an efficient broad absorption band ranging from 230 to 420 nm, perfectly matching the characteristic emission of UV‐light emitting diode (LED) chips. The emission spectra show that the obtained phosphors possess tunable color emissions from yellowish‐green through yellow and ultimately to reddish‐orange by simply adjusting the Mn2+ content (y) in Ba3Gd(PO4)3:0.005 Eu2+,y Mn2+ host. The tunable color emissions origin from the change in intensity between the 4f–5d transitions in the Eu2+ ions and the 4T16A1 transitions of the Mn2+ ions through the energy transfer from the Eu2+ to the Mn2+ ions. In addition, the mechanism of the energy transfer between the Eu2+ and Mn2+ ions are also studied in terms of the Inokuti–Hirayama theoretical model. The present results indicate that this novel orange‐yellow‐emitting phosphor can be used as a potential candidate for the application in white LEDs.  相似文献   

20.
The blue phosphors Na(2?x)Ca(1?x)SiO4:xCe3+ were synthesized by the sol–gel method and their luminescence characteristics were investigated for the first time. Structural information about prepared samples is obtained by analyzing the XRD patterns and SEM micrographs. The photoluminescence (PL) excitation spectra indicate that the Na(2?x)Ca(1?x)SiO4:xCe3+ phosphors can be effectively excited by ultraviolet (360 nm) light. The PL emission spectra exhibit tunable blue broadband emission with the dominant wavelength of 427–447 nm under excitation of 360 nm by controlling the doping concentration of Ce3+. The concentration quenching effect for Ce3+ was found at the optimum doping concentration of 4 mol%. The Commission Internationale de l’Eclairage 1931 chromaticity coordinates of Na1.96Ca0.96SiO4:0.04Ce3+ are (0.1447, 0.0787), which are better color purity compared to the commercial Eu2+-doped BaMgAl10O17 phosphor. Na1.96Ca0.96SiO4:0.04Ce3+ composition shows intense blue emission (peak wavelength, 439 nm) with relative intensity versus commercial BaMgAl10O17:Eu2+ blue phosphor (Nichia) 65 and 158 % under 254 and 365 nm excitation, respectively. All the results indicate that Na(2?x)Ca(1?x)SiO4:xCe3+ phosphors are potential candidate as a blue emitting phosphor for UV-converting white light-emitting diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号