首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the immobilization of horseradish peroxidase (HRP) in chitosan(CS) on a glassy carbon electrode (GCE) modified with the Au‐Pt alloy nanoparticles (NPs) / polyaniline nanotube (nanoPAN) nanocomposite film, a novel hydrogen peroxide biosensor was constructed. The modified processes of GCE were monitored by cyclic voltammetry and electrochemical impedance spectroscopy. Au‐PtNPs/nanoPAN/CS had a better synergistic electrochemical effect than did AuNPs/nanoPAN/CS or PtNPs/nanoPAN/CS. The amperometric response of the biosensor towards H2O2 was investigated by successively adding aliquots of H2O2 to a continuous stirring phosphate buffer solution under the optimized conditions. Because Au‐PtNPs have unique catalytic properties and good biocompatibility, and especially Au‐PtNPs and nanoPAN have synergistic augmentation for facilitating electron‐transfer, the biosensor displayed a fast response time (<2 s) and broad linear response to H2O2 in the range from 1.0 to 2200 μmol L?1 with a relatively low detection limit of 0.5 μmol L?1 at 3 times the background noise. Moreover, the biosensor can be applied in practical analysis and exhibited high sensitivity, good reproducibility, and long‐term stability.  相似文献   

2.
Uric acid (UA) is an important biomarker in urine and serum samples for early diagnosis. This study re‐ ports a fluorescent biosensor based on Poly(cytosine)‐templated silver nanoclusters (C‐Ag NCs) and uricase for the highly sensitive and fast detection of UA. The strong fluorescence of the C‐Ag NCs prepared from poly (cytosine) nucleotides templates could be sensitively quenched by trace amount of H2O2, which produced from oxidation reaction of UA catalyzed by uricase. This biosensor exhibits two linear ranges as 50 nM~50 μM and 50 μM~400 μM, with a detection limit of 50 nM. The sensitivity of the biosensor is considerably improved compared with the methods reported in the literature. Furthermore, the detection ability of uric acid in serum samples is confirmed and this C‐Ag NCs‐based uric acid biosensor shows good promise of practical application.  相似文献   

3.
Teresa Łuczak 《Electroanalysis》2009,21(13):1539-1549
Gold nanoparticles (Au‐NPs), cystamine (CA) and 3,3′‐dithiodipropionic acid (DTDPA) modified gold bare electrodes were applied in voltammetric sensors for simultaneous detection of norepinephrine (NEP), ascorbic (AA) and uric (UA) acids. A linear relationship between norepinephrine concentration and current response was obtained in the range of 0.1 μM to 600 μM M with the detection limit ≤0.091 μM for the electrodes modified at 2D template and in the range of 0.1 μM to 700 μM M with the detection limit ≤0.087 μM for the electrodes modified at 3D template The results have shown that using modified electrodes it is possible to perform electrochemical analysis of norepinephrine without interference of ascorbic and uric acids, whose presence is the major limitation in norepinephrine determination at a bare gold electrode. The modified SAMs electrodes show good selectivity, sensitivity, reproducibility and high stability.  相似文献   

4.
This paper reports the fabrication of Au nanoparticles (Au NPs)‐Ni‐Al layerd double hydroxide (LDH) composite film by one step electrochemical deposition on the surface of a glass carbon electrode from the mixture solution containing HAuCl4 and nitrate salts of Ni2+ and Al3+. Improved conductivity was obtained by Au NPs codeposited on LDH film. The synergic effect of LDHs and Au NPs dramatically improves the performance of L ‐cysteine electro‐oxidation, displaying low oxidation peak potential (0.16 V) and high current response. Thus the electrode was used to sense L ‐cysteine, showing good sensitivity and selectivity.  相似文献   

5.
《Electroanalysis》2004,16(15):1271-1278
Four kinds of xanthine oxidase (XOD) based amperometric biosensors were fabricated and their analytical performances were compared. Polypyrrole (PPY)/XOD biosensor was constructed by electrochemical oxidation of pyrrole in the solution containing xanthine oxidase and pyrrole in this paper. Colloidal Au was then immobilized on the biosensor. On the other hand, electron mediator, Prussian Blue (PB), was deposited on the electrode before the immobilization of PPY/XOD to enhance electron‐transfer rate and current response. The results showed that PPY/XOD, PPY/XOD/Au‐colloid, PB/PPY/XOD and PB/PPY/XOD/Au‐colloid biosensors exhibit good response to xanthine in 1×10?6 M and 2×10?5 M and Michaelis‐Menten constants (Km) of these biosensors were 242.2, 113.4, 144.5, 43.2 μmol?L?1, respectively. The dependence of current responses with applied voltages was discussed, and different mechanisms of these biosensors were discussed. It has been found that colloidal Au can enhance the current response at the same concentration of xanthine solution and decrease the energy‐barrier of electron‐transfer reaction on the electrode.  相似文献   

6.
《Electroanalysis》2005,17(24):2217-2223
Glassy carbon electrode modified by microcrystals of fullerene‐C60 mediates the voltammetric determination of uric acid (UA) in the presence of ascorbic acid (AA). Interference of AA was overcome owing to the ability of pretreated fullerene‐C60‐modified glassy carbon electrode. Based on its strong catalytic function towards the oxidation of UA and AA, the overlapping voltammetric response of uric acid and ascorbic acid is resolved into two well‐defined voltammetric peaks with lowered oxidation potential and enhanced oxidation currents under conditions of both linear sweep voltammetry (LSV) and Osteryoung square‐wave voltammetry (OSWV). At pH 7.2, a linear calibration graph is obtained for UA in linear sweep voltammetry over the range from 0.5 μM to 700 μM with a correlation coefficient of 0.9904 and a sensitivity of 0.0215 μA μM?1 . The detection limit (3σ) is 0.2 μM for standard solution. AA in less than four fold excess does not interfere. The sensitivity and detection limit in OSWV were found as 0.0255 μA μM?1 and 0.12 μM, for standard solution respectively. The presence of physiologically common interferents (i.e. adenine, hypoxanthine and xanthine) negligibly affects the response of UA. The fullerene‐C60‐modified electrode exhibited a stable, selective and sensitive response to uric acid in the presence of interferents.  相似文献   

7.
Liu J  Niu J  Yin L  Jiang F 《The Analyst》2011,136(22):4802-4808
A biosensor based on Trametes versicolor laccase (Lac) was developed for the determination of phenolic compounds. The biosensor was prepared by in situ electrospinning of a mixture of polyvinyl alcohol (PVA), Lac, PEO-PPO-PEO (F108) and gold nanoparticles (Au NPs), where F108 was used as an enzyme stabilizing additive and Au NPs was used to enhance the conductivity of the biosensor. Laser confocal scanning microscopy and electrochemical impedance spectroscopy proved that the enzyme was successfully encapsulated into the electrospun nanofibers. Under the optimal conditions, the lowest detection limit was found to be 0.04 μM (S/N = 3) for 2,4-DCP and the highest detection limit was found to be 12.10 μM for 4-CP. The sensitivity of the biosensor obtained in the linear range for chlorophenols followed the sequence 2,4-dichlorophenol (2,4-DCP) > 2,4,6-trichlorophenol (2,4,6-TCP) > 4-chlorophenol (4-CP). The sensing performance for chlorophenols was attributed to the suitable electrochemical interface of PVA/F108/Au NPs/Lac, resulting from biocompatibility, a high surface area-to-volume ratio (10.42 m(2) g(-1)) and superior mechanical properties of the electrospun nanofibers. The biosensor exhibited good repeatabilities of 7.6%, 2.8% and 9.0% (R.S.D.) and reproducibilities of 14.9%, 10.4% and 13.7% (R.S.D.) for 4-CP, 2,4-DCP and 2,4,6-TCP, respectively. Lac retained 65.8% of its initial activity after a 30-day storage period.  相似文献   

8.
An ultrasensitive electrochemical biosensor was fabricated for electroanalytical determination of ascorbic acid(AA), dopamine(DA) and uric acid(UA) individually and simultaneously based on polypyrrole hollow nanotubes loaded with Au and Fe3O4 nanoparticles(NPs) uniformly(PPy@Au-Fe3O4). The PPy@Au-Fe3O4 nanotubes were synthesized in one-pot using MoO3 nanorods as templates and the polymerization of Py, the formation of Au and Fe3O4 NPs and the removel of MoO3 templates took place stimultaneously. Electrochemical studies reveal that PPy@Au-Fe3O4modified glassy carbon electrode(GCE) possesses excellent electro-catalytic activities toward the oxidation of AA, DA and UA. Their oxidation peak currents increase linearly in the concentration ranges of 1-2000 μmol/L for AA, 0.01-25 and 25-300 μmol/L for DA and 0.1-300 μmol/L for UA. Their detection limit values(S/N=3) were calculated as 0.45, 0.0049, and 0.051 μmol/L for AA, DA and UA in the individual detection. By changing the concentrations simultaneously, the calibration curves showed linearity to 1000, 200, and 200 μmol/L with detection limit of 0.39, 0.0060, and 0.060 μmol/L for AA, DA, and UA, respectively. Finally, the obtained biosensor was successfully applied to the detection of AA, DA, and UA with satisfactory results on actual samples.  相似文献   

9.
Graphene was successfully prepared and well separated to individual sheets by introducing  SO3. XRD and TEM were employed to characterize the graphene. UV‐visible absorption spectra indicated that glucose oxidase (GOx) could keep bioactivity well in the graphene‐Au biocomposite. To construct a novel glucose biosensor, graphene, Au and GOx were co‐immobilized in Nafion to further modify a glassy carbon electrode (GCE). Electrochemical measurements were carried out to investigate the catalytic performance of the proposed biosensor. Cyclic voltammograms (CV) showed the biosensor had a typical catalytic oxidation response to glucose. At the applied potential +0.4 V, the biosensor responded rapidly upon the addition of glucose and reached the steady state current in 5 s, with the present of hydroquinone. The linear range is from 15 μM to 5.8 mM, with a detection limit 5 μM (based on the S/N=3). The Michaelis‐Menten constant was calculated to be 4.4 mM according to Lineweaver–Burk equation. In addition, the biosensor exhibits good reproducibility and long‐term stability. Such impressive properties could be ascribed to the synergistic effect of graphene‐Au integration and good biocompatibility of the hybrid material.  相似文献   

10.
Here we report the first mediated pain free microneedle‐based biosensor array for the continuous and simultaneous monitoring of lactate and glucose in artificial interstitial fluid (ISF). The gold surface of the microneedles has been modified by electrodeposition of Au‐multiwalled carbon nanotubes (MWCNTs) and successively by electropolymerization of the redox mediator, methylene blue (MB). Functionalization of the Au‐MWCNTs/polyMB platform with the lactate oxidase (LOX) enzyme (working electrode 1) and with the FAD‐Glucose dehydrogenase (FADGDH) enzyme (working electrode 2) enabled the continuous monitoring of lactate and glucose in the artificial ISF. The lactate biosensor exhibited a high sensitivity (797.4±38.1 μA cm?2 mM?1), a good linear range (10–100 μM) with a detection limit of 3 μM. The performance of the glucose biosensor were also good with a sensitivity of 405.2±24.1 μA cm?2 mM?1, a linear range between 0.05 and 5 mM and a detection limit of 7 μM. The biosensor array was tested to detect the amount of lactate generated after 100 minutes of cycling exercise (12 mM) and of glucose after a normal meal for a healthy patient (10 mM). The results reveal that the new microneedles‐based biosensor array seems to be a promising tool for the development of real‐time wearable devices with a variety of sport medicine and clinical care applications.  相似文献   

11.
《Electroanalysis》2017,29(12):2719-2726
A novel glucose biosensor was constructed through the immobilization of glucose oxidase (GOx) on gold nanoparticles (Au NPs) deposited, and chemically reduced graphene oxide (rGO) nanocomposite. In the synthesis, tannic acid (TA) was used for the reduction of both graphene oxide, and Au3+ to rGO, and Au NPs, respectively. Also, by harnessing the π‐π interaction between graphene oxide and TA, and protein‐TA interaction, a novel nanocomposite for the fabrication of a third generation biosensor was successfully constructed. Upon the oxidation of TA to quinone, which is easily reducible at the negative potential range, enhanced electron transfer was obtained. The cyclic voltammetry (CV) results demonstrated a pair of well‐defined and quasi‐reversible redox peaks of active site molecule of GOx. The biosensor exhibited a linear response to glucose concentrations varying from 2 to 10 mM with a sensitivity of 18.73 mA mM−1 cm−2. The fabricated biosensor was used for the determination of glucose in beverages.  相似文献   

12.
In a tannic acid assisted synthesis of mesoporous TiO2, tannic acid was used as a cost effective and non‐toxic template for pore formation. Meanwhile, a gold nanoparticles (Au NPs) deposited TiO2 nanocomposite was coated on an indium tin oxide electrode for the fabrication of a photoelectrochemical (PEC) biosensing system. Upon the formation of anatase structure, the electrode was coated with MoS2 for effective visible light absorption. The mesoporous structure led to an enhanced surface area by improving Au NPs and glucose oxidase adsorption. Incorporation of Au NPs led to an enhanced photonic efficiency due to the generation of Schottky barriers. The obtained nanocomposite was used for the light‐driven, real‐time, and selective PEC glucose sensing. Under visible light irradiation, the enzyme immobilized electrodes yielded significant photocurrent improvement owing to the releasing electron donor H2O2. The obtained PEC biosensor demonstrated acceptable reproducibility and stability with a sensitivity of 4.42 μA mM?1 cm?2 and a low detection limit of 1.2 μM glucose. Also, the linear measurement range was found to be 0.004–1.75 mM glucose. The results indicated that the proposed production method of mesoporous TiO2 will pave the way for a green chemistry based porous material production, along with the extension of the implementation of semiconductors in PEC biosensing systems.  相似文献   

13.
Teresa Łuczak 《Electroanalysis》2009,21(23):2557-2562
Thiodipropionoc acid (TDPA), cysteamine (CA) and gold nanoparticles (Au‐NPs) modified gold pure electrodes have been applied in voltammetric sensors for simultaneous detection of epinephrine (EP), ascorbic (AA) and uric (UA) acids. Modified electrodes with self assembled layers (SAMs) show high selectivity, sensitivity, reproducibility and stability. A linear relationship between the epinephrine concentration and the current response is obtained in the range of 0.1 μM to 0.65 μM with the detection limit ≤0.065 μM for the electrodes modified at 2D surface and in the range of 0.1 μM to 0.75 μM with the detection limit ≤0.082 μM for the electrodes modified at the 3D surface.  相似文献   

14.
In this study, a sensitive nicotinamide adenine dinucleotide (NADH) biosensor based on Au‐Copper oxide nanocomposite modified carbon ceramic electrode (Au?CuO/CCE) was introduced. The developed NADH biosensor was prepared by controlled electrodeposition of copper and Au nanoparticles on the surface of a renewable CCE and was turned to Au?CuO/CCE by cycling the potential in alkaline media. The prepared electrode was carefully characterized with scanning electron microscopy, X‐ray diffraction, atomic force microscopy and cyclic voltammetry techniques. According to scan rate study, surface coverage (Γ) of the fabricated Au?CuO/CCE was calculated to be 1.54×10?8 mol cm?2 which was 3 time more than CuO/CCE. The fabricated electrode is well stable which could be reliably utilized for the determination of NADH with amperometry technique over the concentration range of 1–29 μM with sensitivity and detection limit (S/N=3) of 0.1025 μA μM?1 and 0.09 μM respectively. The prepared biosensor was used for NADH determination in serum samples with fast response time and satisfactory analytical results.  相似文献   

15.
《Electroanalysis》2004,16(23):1977-1983
2,2‐bis(3‐Amino‐4‐hydroxyphenyl)hexafluoropropane (BAHHFP) was electro‐polymerized oxidatively on glassy carbon by cyclic voltammetry. The activity of the modified electrode towards ascorbic acid (AA), uric acid (UA) and dopamine (DA) was characterized with cyclic voltammetry and differential puls voltammetry (DPV). The findings showed that the electrode modification drastically suppresses the response of AA and shifts it towards more negative potentials. Simultaneously an enhancement of reaction reversibility is seen for DA and UA. Unusual, selective preconcentration features are observed for DA when the polymer‐modified electrode is polarized at negative potential. In a ternary mixture containing the three analytes studied, three baseline resolved peaks are observed in DPV mode. At physiological pH 7.4, after 5 min preconcentration at ?300 mV, peaks positions were ?0.073, 0.131 and 0.280 V (vs. Ag/AgCl) for AA, DA and UA, respectively. Relative selectivities DA/AA and UA/AA were over 4000 : 1 and 700 : 1, respectively. DA response was linear in the range 0.05–3 μM with sensitivity of 138 μA μM?1 cm?2 and detection limit (3σ) of 5 nM. Sensitive quantification of UA was possible in acidic solution (pH 1.8). Under such conditions a very sharp peak appeared at 630 mV (DPV). The response was linear in the range 0.5–100 μM with sensitivity of 4.67 μA μM?1 cm?2 and detection limit (3σ) of 0.1 μM. Practical utility was illustrated by selective determination of UA in human urine.  相似文献   

16.
We report herein the development of a novel glucose chemiluminescence (CL) biosensor based on covalent immobilization of glucose oxidase (GOD) in glutaraldehyde-functionalized glass cell and direct coupling of chitosan-induced Au/Ag alloy nanoparticles on it, and how it may be useful for determination of glucose due to CL detection of enzymatically generated H2O2. In addition, the nanoalloy offers excellent catalytic activity toward hydrogen peroxide generation in enzymatic reaction between GOD and glucose and increases stability of covalent-linked enzyme. Chitosan molecules act as both the reducing and stabilizing agents for the preparation of nanoparticles (NPs) and also as a coupling agent between GOD and Au/Ag alloy NPs, which made possible the fabrication of a sensitive, accurate and stable biosensor for glucose. Under the optimum conditions, the biosensor can be used for the determination of glucose in the range of 1.2 × 10–6 to 6.25 × 10–3 M with a detection limit of 5.0 × 10–7 M. The CL biosensor exhibited good storage stability, i.e., 90% of its initial response was retained after 2 months storage at pH 7.0. The present CL biosensor has been used to determine glucose in real serum and urine samples and validated against colorimetric spectrophotometry method.  相似文献   

17.
《Electroanalysis》2006,18(24):2458-2466
A promising electrochemical biosensor was fabricated by electrochemical grafting of ribonucleic acid (RNA) at 1.8 V (vs. SCE) on glassy carbon electrode (GCE) (denoted as RNA/GCE), for simultaneous detection of dopamine (DA) and uric acid (UA) with coexistence of excess amount of ascorbic acid (AA). The electrode was characterized by X‐ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The RNA modified layer on GCE exhibited superior catalytic ability and anionic exclusive ability in comparison with the DNA modified electrode. Three separated anodic DPV peaks were obtained at 0.312, 0.168 and ?0.016 V for UA, DA and AA, respectively, at the RNA/GCE in pH 7.0 PBS. In the presence of 2.0 mM AA, a linear range of 0.37 to 36 μM with a detection limit of 0.2 μM for DA, and in the range of 0.74 to 73 μM with a detection limit of 0.36 μM for UA were obtained. The co‐existence of 5000 fold AA did not interfere with the detection of DA or UA. The modified electrode shows excellent selectivity, good sensitivity and good stability.  相似文献   

18.
In this study, a new glucose biosensor was fabricated by immobilizing glucose oxidase (GOx) on platinum nanoparticles (Pt NPs) decorated reduced graphene oxide (rGO)/Zn‐MOF‐74 hybrid nanomaterial. Herein, the biosensor fused the advantages of rGO with those of porous Zn‐MOF and conductive Pt NPs. This has not only enlarged the surface area and porosity for the efficient GOx immobilization and faster mass transport, but also provided favorable electrochemical features such as high current density, remarkable electron mobility through metal nanoparticles, and improved electron transfer between the components. The GOx‐rGO/Pt NPs@Zn‐MOF‐74 coated electrode displayed a linear measurement range for glucose from 0.006 to 6 mM, with a detection limit of 1.8 μM (S/N: 3) and sensitivity of 64.51 μA mM?1 cm?2. The amperometric response of the enzyme biosensor demonstrated the typical behavior of Michaelis‐Menten kinetics. The obtained satisfying sensitivity and measurement range enabled fast and accurate glucose measurement in cherry juice using the fabricated biosensor. The water‐stable Zn‐MOF‐74 demonstrated higher enzyme loading capacity and can be potent supporting material for biosensor construction.  相似文献   

19.
《Electroanalysis》2017,29(10):2348-2357
This work describes a simple preparation of 1‐diazo‐2‐naphthol‐4‐sulfonic acid (1,2,4‐acid) and multiwalled carbon nanotubes (MWCNTs) modified glassy carbon electrode (GCE) for the simultaneous detection of Co(II) and Cu(II). MWCNTs, with their good conductivity and large surface area, were drop‐casted onto the surface of the GCE prior to the electrodeposition of 1,2,4‐acid, a metal chelating agent. Co(II) and Cu(II) were simultaneously measured by differential pulse anodic stripping voltammetry (DPASV) in a batch system. Under optimum conditions, the linear range of Co(II) was between 0.10 and 2.5 μg mL−1 with an LOD of 80 ng mL−1. Two linear ranges were obtained for Cu(II), 0.0050 to 0.030 μg mL−1 and 0.040 to 0.25 μg mL−1,with an LOD of 2.4 ng mL−1. The method offered a high operational stability for up to 52 measurements (RSD=3.4 % for Co(II) and 2.6 % for Cu(II)) and good reproducibility (RSD=1.2 % for Co(II) and 1.7 % for Cu(II)). In the simultaneous detection of Co(II) and Cu(II), there was no effect from common interferences found in wastewater. The method was successfully applied in real water samples with good recoveries (88.2±0.8 to 102.0±0.8 % for Co(II) and 96.5±0.4 to 103.8±0.9 % for Cu(II)) and the results were in good agreement with those obtained from inductively coupled plasma optical emission spectrometry (ICP‐OES) (P >0.05).  相似文献   

20.
《Electroanalysis》2004,16(20):1734-1738
A novel biosensor by electrochemical codeposited Pt‐Fe(III) nanocomposites and DNA film was constructed and applied to the detection of uric acid (UA) in the presence of high concentration of ascorbic acid (AA). Based on its strong catalytic activity toward the oxidation of UA and AA, the modified electrode resolved the overlapping voltammetric response of UA and AA into two well‐defined peaks with a large anodic peak difference (ΔEpa) of about 380mV. The catalytic peak current obtained from differential pulse voltammetry (DPV) was linearly dependent on the UA concentration from 3.8×10?6 to 1.6×10?4 M (r=0.9967) with coexistence of 5.0×10?4 M AA. The detection limit was 1.8×10?6 M (S/N=3) and the presence of 20 times higher concentration of AA did not interfere with the determination. The modified electrode shows good sensitivity, selectivity and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号