首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The CHD3 Raman spectrum from 1925 to 2455 cm?1 has been photographed with a resolution of about 0.2 cm?1, showing the overlapping ν2 and ν4 bands. Ground state combination differences yield C0 = 2.6297 ± 0.0003 cm?1. The ν4 state is weakly perturbed, but reasonably accurate values could be obtained for ν4 = 2250.88 ± 0.10 cm?1, ()4 = 0.656 ± 0.010 cm?1, C4 - C0 and B4 - B0. Some of these constants differ significantly from values previously estimated by infrared workers. For the ν2 state the constants determined are in good agreement with recent infrared results.  相似文献   

2.
The results of electron paramagnetic resonance (EPR) studies of Dy3+ ions in lead thiogallate PbGa2S4 single crystals have been presented. It has been shown that the ground state of these ions corresponds to the lowest Stark sublevel Γ6 of the term 6 H 15/2. The spectra are well described by the axially symmetric spin Hamiltonian with the effective spin S = 1/2 with the factors g = 15.06 and g = 2.47. The Dy3+ ions substitute Pb2+ ions in the crystal lattice of PbGa2S4. The observed hyperfine structure has allowed to unambiguously interpret the EPR spectra. The hyperfine interaction constants of two odd isotopes of dysprosium in lead thiogallate single crystals have been found to be A = 675 × 10?4 cm?1 and A = 111 × 10?4 cm?1 for 163Dy and A = 472 × 10?4 cm?1 and A = 77 × 10?4 cm?1 for 161Dy.  相似文献   

3.
Electronic spectra of a series of weakly bound clusters consisting of argon (Arn, n=1-4) bound to the butadiyne cation, C4H2+, have been recorded in the visible range from 440 to 520 nm by photodissociation. The C4H2+ fragment signal was recorded as a function of the laser wavelength during excitation of the AX electronic transition. The observed transitions were assigned to the band origin of the cationic complexes and to vibronic bands involving excitation of the ν3 and ν7 vibrational modes of the C4H2+ moiety, as well as combination bands of these modes. Comparison of the photodissociation spectra of the various clusters reveals a small blue shift, 25 cm−1 of the band maxima relative to the corresponding transitions reported from gas phase spectra of the bare C4H2+ cation. The magnitude of the blue shift of each band increases with successive Ar solvation up to n=3. Furthermore, each band becomes increasingly broadened towards the red with the addition of Ar atoms due to an increasing number of unresolved transitions involving excited intermolecular modes.  相似文献   

4.
The absorption spectrum of Ni2+ doped in Cs2Mg(SO4)2 · 6H2O single crystals has been studied at room and liquid nitrogen temperatures in the range 7000–34000 cm?1. The observed spectrum is satisfactorily interpreted in terms of cubic ligand field model including spin-orbit coulping. The ligand field parameters evaluated to best fit the observed spectrum are B = 955 cm?1, C = 3572 cm?1, Dq = 910 cm?1 and ξ = 550 cm?1. The non-ligand field band observed at 77K has been interpreted to be the superposition of vabrational mode of SO42? radical on 3T1g(F) band.  相似文献   

5.
The temporal variation of chemiluminescence emission from OH?(A2 Σ +) and CH?(A2 Δ) in reacting Ar-diluted H2/O2/CH4, C2H2/O2 and C2H2/N2O mixtures was studied in a shock tube for a wide temperature range at atmospheric pressures and various equivalence ratios. Time-resolved emission measurements were used to evaluate the relative importance of different reaction pathways. The main formation channel for OH? in hydrocarbon combustion was studied with CH4 as benchmark fuel. Three reaction pathways leading to CH? were studied with C2H2 as fuel. Based on well-validated ground-state chemistry models from literature, sub-mechanisms for OH? and CH? were developed. For the main OH?-forming reaction CH+O2=OH?+CO, a rate coefficient of k 2=(8.0±2.6)×1010 cm3?mol?1?s?1 was determined. For CH? formation, best agreement was achieved when incorporating reactions C2+OH=CH?+CO (k 5=2.0×1014 cm3?mol?1?s?1) and C2H+O=CH?+CO (k 6=3.6×1012exp(?10.9 kJ?mol?1/RT) cm3?mol?1?s?1) and neglecting the C2H+O2=CH?+CO2 reaction.  相似文献   

6.
Interaction of an unpaired electron of the tetrahedral V4+ ion in Ca3In2Ge3O12 garnet with the four nearest In nuclei gives rise to clearly resolved structure of EPR spectra. We report the observation and analysis of these spectra at three frequencies and at temperature 77 K. The temperature dependence between liquid helium and the room temperatures was also studied. Parameters of the spin Hamiltonian are g=1·8735; g=1·9825; ∣ ¦A|=150·4×10?4cm?1; ¦ A¦ = 36·7 × 10?4 cm?1. The supertransferred hyperfine interaction was found to be isotropic, absolute value of the corresponding parameter a is 22·1 × 10?4 cm?1.  相似文献   

7.
Mößbauereffect measurements were performed with FeCl2, FeSO4 and FeSO4 · 7 H2O in the temperature range between 5 and 300 ?K. The quadrupole splittings at 5 ?K were determined to be (1.300±0.027) mm/sec, (3.650±0.053) mm/sec, and (3.350±0.053) mm/sec respectively. From the temperature dependence of the quadrupole splittings it follows that in FeCl2 the energy of the excited 3d-electron-level isδ=150 cm?1, in FeSO4 δ 1=360 cm?1 andδ 2=1680 cm?1 and in FeSO4 · 7 H2Oδ 1=480 cm?1 andδ 2=1300 cm?1. The magnitudes of the magnetic field at the iron nucleus at 5 ?K are (202±8) kOe for FeSO4 and (0±4) kOe for FeCl2.  相似文献   

8.
MoN and MoO molecules produced in a hollow cathode discharge have been trapped in Ne, Ar, and Kr matrices at 4.2 and 13 K and investigated by optical spectroscopy. Bands attributed to MoN were identified in the red and blue spectral regions and assigned by comparison with gas phase results to the A4πX4Σ? (a) and B4Σ → X4Σ? (a) transitions, respectively. The ground state of Mo14N has been identified as 4Σ? with ωe = 1040 cm?1 in an Ar matrix. Absorptions assigned to MoO in the red spectral region form the (0-0) and (1-0) bands of at least one electronic transition, but could not definitely be correlated with the gas phase results. The ground state vibrational frequency for Mo16O in an Ar matrix is 893.5 cm?1. Additionally, Mo2 absorptions centered at 19 305 cm?1 were shown to be part of a vibrational progression with an average spacing of 181 cm?1.  相似文献   

9.
Using Mößbauer effect measurements in the temperature range between 3 °K and 310 °K the magnetic fields at the nucleus in iron-stilbene, FeCl2·H2O and FeCl3 are determined to beH T=0=(250±10) kOe, (252±18) kOe and (468±10) kOe; a Néel-temperature ofT N=(23±1) °K is measured for iron-stilbene. The electric quadrupole splittings atT=0 °K for iron-stilbene and FeCl2 ·H 2 O, ΔE=(+2.52±0.02) mm/sec and (+2.50±0.05) mm/sec, yield electric field gradients at the iron nucleus ofq z=+9.7·1017 V/cm2 and +9.6·1017 V/cm2, whereq z⊥H; Debyetemperatures of θ=162 °K and 188 °K are obtained. The energy of the excited 3d-electron levels in iron-stilbene is estimated to Δ1=309 cm?1 and Δ2=618cm?1 as deduced from the temperature dependence ofΔE. In contrast to the suggestion ofEuler andWillstaedt bivalence of the iron in ironstilbene is found; its composition is shown to be 4(FeCl2 ·H 2O)·stilbene.  相似文献   

10.
The parallel band ν6(A2) of C3D6 near 2336 cm?1 has been studied with high resolution (Δν = 0.020 – 0.024 cm?1) in the infrared. The band has been analyzed using standard techniques and the following parameters have been determined: B″ = 0.461388(20) cm?1, DJ = 3.83(17) × 10?7 cm?1, ν0 = 2336.764(2) cm?1, αB = (B″ ? B′) = 8.823(12) × 10?4 cm?1, βJ = (DJ ? DJ) = 0, and αC = (C″ ? C′) = 4.5(5) × 10?4 cm?1.  相似文献   

11.
A high-resolution infrared spectrum of H2CO was measured in the range from 2600 to 3300 cm?1. Vibration-rotation lines assigned to the combination bands ν2 + ν3 (a-type) and ν2 + ν6 (b-type) were analyzed as asymmetric-rotor bands by taking account of the Coriolis interactions among the ν2 + ν3, ν2 + ν6, and ν2 + ν4 states, though none of the ν2 + ν4 band lines have yet been definitely identified. The main results in cm?1 units (with 2.5 times standard errors in the last digits given in parentheses) are: ν0 = 3238.45(1), A - B?= 8.252(3), B?= 1.2053(2), and B - C = 0.1719 (assumed) for ν2 + ν3; ν0 = 3000.10(1), A - B?= 8.125(46), B?= 1.2075(5), and B - C = 0.1693(14) for ν2 + ν6; and ν0 = 2904.6(48), A - B?= 8.225(54), B?= 1.2023(20), and B - C = 0.1522 (assumed) for ν2 + ν4; the effective Coriolis interaction terms are: ξ26,24a = 10.10(3)cm?1 and ξ23,26c = 0.96(3)cm?1 under the assumption that ξ23,24b = 1.2841cm?1. A second combination band 2ν2 + ν6 measured with lower resolution gave ν0 = 4734.81(6)cm?1.  相似文献   

12.
In this paper, we report on measurements of the fluorescence-excitation profile of the red Na-D1 line wing from about 1 cm?1 to 1100 cm?1 and of the blue Na-D2 line-wing from about 1 cm?1 to 600 cm?1, with respect to the corresponding line centre. We have also measured the fluorescence-excitation profile of the red Na-D2 and blue Na-D1 inner (overlapping) line wings from 1 cm?1 with respect to the centre of each of the lines. All these wings were measured in several premixed, laminar, shielded H2O2Ar and H2O2N2 flames at 1 atm (1400 K ? T ? 2300 K). We also measured these wings in a vapor cell containing Ar or N2 perturbers (T ~ 480 K, p ~ 0.4 atm) in order to determine the influence of temperature on these wings. Using a tunable CW dye laser as excitation source, we determined the fluorescence-excitation profiles by measuring the total fluorescence intensity while tuning the laser wavelength. In order to specify the contributions that the different kinds of major flame perturbers (Ar, N2, H2O) make to the wings, we compared the wing profiles measured in various flames of different flame-gas compositions. In this comparison, the wing profiles were normalized with respect to the line-centre. We compared our measurements of far red Na-D1 and blue Na-D2 line-wings (Δσ ? 30 cm?1) specified to Ar perturbers (at T = 500 K and T = 2000 K) with the results derived from quasi-static theory using available interaction potential data. In the case of Ar perturbers at T = 500 K, we observed a satellite at about 8 cm?1 from the line-centre on the red Na-D1 wing: this satellite was absent at T = 2000 K. The position of this red satellite was explained with the help of a set of “modified” potentials, which were constructed for interpreting the collisional Na-D broadening- and shift-rates deduced from our line-core observations and which were reported in Part I of this paper.  相似文献   

13.
The v = 0?0 quadrupole spectrum of H2 has been recorded using a 0.005-cm?1 resolution Fourier transform spectrometer. The rotational lines S(1) through S(5) are observable in the spectra, in the region 587 to 1447 cm?1. The spectral position for S(0) was also obtained from its v = 1-0 ground-state combination difference. The high accuracy of the H2 measurements has permitted a determination of four rotational constants. These are (in cm?1) B0 = 59.33455(6); D0 = 0.045682(4); H0 = 4.854(12) × 10?5; L0 = ?5.41(12) × 10?8. The hydrogen line positions will facilitate studies of structure and dynamics in astrophysical objects exhibiting infrared H2 spectra. The absolute accuracy of frequency calibration over wide spectral ranges was verified using 10-μm CO2 and 3.39-μm CH4 laser frequencies. Standard frequencies for 5-μm CO were found to be high by 12 MHz (3.9 × 10?4 cm?1).  相似文献   

14.
Nitrogen- and air-broadened Lorentz halfwidths have been determined for 29 lines in the P and R branches of the (ν4 + ν5)0 combination band of 12C2H2 using a tunable diode laser spectrometer. Two tunable diode lasers operating in the region 1250–1380 cm?1 were used in recording the data. For nitrogen broadening, the measured halfwidths at 296 K decrease from about 0.11 cm?1 atm?1 at |m| = 1 to about 0.05 cm?1 atm?1 at |m| = 30, where m = J″ + 1 for R-branch lines, m = ?J″ for P-branch lines, and J″ is the lower state rotational quantum number. On the average, the air-broadened halfwidths are 97% of the N2-broadened halfwidths.  相似文献   

15.
The 3ν17, 3ν37, and 4ν07 hot bands of the ν4 fundamental of C3O2 in the 1580 cm?1 region were analyzed from tunable diode laser spectra and the ground state to ν4 + 2ν07 band at 1644 cm?1 from Fourier transform spectra (FTS). The molecular constants for all of the v4 1 ← 0 bands as well as the intensity of the ν0 + 2ν07 sum band relative to the ν4 fundamental were in agreement with the predictions of the model of Weber and Ford. FTS spectra at 0.05 cm?1 resolution were obtained of the sum and difference bands of ν2 with ν7 in the 750–900 cm?1 region. Sharp Q branches occur for each ν7 state in the sum bands, but only a number of R-branch bandheads and no recognizable Q branches in the difference bands. Assignments of the sum band Q branches through v7 = 6 were made and molecular constants were determined for the ν2 + ν17 ← 0 transition at 819.7 cm?1. The ν7 potential function in the v2 = 1 state was found to have a 1.2 cm?1 barrier with a minimum at α = 4.9°, where 2α is the angular deviation from linearity. The Q-branch positions predicted from the calculated energy levels fit those observed within several cm?1.  相似文献   

16.
The study of the gas-phase infrared spectrum of C2H6 in the region of the perpendicular CH-stretching band, ν7, near 3000 cm?1 is extended for the ΔK = + 1 subbands as far as K = 20. The spectral resolution of ~0.030 cm?1 is increased to ~0.015 cm?1 by deconvolution. The earlier investigation of this band for KΔK = +9 to ?5, is repeated with greater accuracy, providing more reliable ground-state constants (cm?1): B0 = 0.663089 ± 24, D0J = (0.108 ± 4) × 10?5, D0JK = (0.50 ± 7) × 10?5. The molecular constants (cm?1) for the ν7 fundamental are B7 = 0.66310 ± 3, A7 = 2.682, ν0 = 2985.39, ζ7 = 0.128. A discussion of resonance effects in this band, in particular x-y-Coriolis and Fermi resonance, is given.  相似文献   

17.
We have obtained fully resolved spectra of the ν1 (Q-branch) band of CF4 at a pressure of 4 Torr using a variation of stimulated Raman spectroscopy. With an experimental resolution of ≤0.004 cm?1, no detectable tensor splitting of the rotational levels exists up to J = 55. The spectrum is readily fit with a band origin α = 909.0720 cm?1 and a single rotational term β ? β0 = ?3.417 × 10?1cm?1. We have also observed an underlying hot band, which we tentatively assign as the ν1 + ν2ν2 transition, with α′ = 909.1997 cm?1 and (β ? β0)′ = ?3.405 × 10?4cm?1.  相似文献   

18.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4 and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4?S(1)O42− and H(12)S(2)O4?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature.  相似文献   

19.
The ground-state rotational constants B0, D0, and H0 have been determined for GeH4 from the analysis of ground-state combination differences in the infrared spectra of isotopically enriched 70GeH4, 72GeH4, and 74GeH4. The spectra were recorded at 0.06-cm?1 resolution and about 0.005-cm?1 precision for unblended lines. Suitable combination differences were found in both the ν2 and the ν4 infrared bands. The ground-state constants were assumed to be invariant to isotopic substitution at Ge, and the tensor distortion constants were held fixed at their microwave values. The results obtained are: B0 = 2.69587 ± 0.00007 cm?1, D0 = (3.34 ± 0.03) × 10?5 cm?1, H0 = (1.3 ± 0.5) × 10?9 cm?1.  相似文献   

20.
The IR spectra of OH-compensated point defects in MgO (and CaO) single crystals of various purity grades were reinvestigated. Three distinct groups of IR bands appear in the O-H stretching region: A, B and C around 3550 cm?1 (3650 cm?1), 3300 cm?1 (3450 cm?1) and 3700cm?1 (3750cm?1). They are assigned as follows: band A to the fully compensated, band B to the half compensated and band C to the overcompensated cation vacancies, [O?V”catH?]×, [O?V”cat], and [O?O?V”catH?]?, respectively.Upon cooling to 80 K the band A shows a complex behavior partly due to the formation of Ha molecules by charge transfer and concommittant O? formation: [? (H2)”cat?]×. The O? represent defect electrons or positive holes in the O2? matrix.Bands A and B show a characteristic multiplet splitting which is caused by local lattice strains coming from carbon atoms on near-by interstitial position. The intensity ratios between the multiplet components remain constant regardless of temperature pretreatments up to 1470 K, but strong variations of the integral intensities are observed. These are caused by the highly mobile C atoms entering and leaving reversibly the cation vacancy sites as a function of temperature and of the quenching speed. When the C atoms push the H2 molecules onto interstitial sites, an H-H stretching signal appears around 4150cm?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号