首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the problem of phase reconstruction from magnitude of multidimensional band-limited functions is considered. It is shown that any irreducible band-limited function f(z1…,zn), zi ? C, i=1, …, n, is uniquely determined from the magnitude of f(x1…,xn): | f(x1…,xn)|, xi ? R, i=1,…, n, except for (1) linear shifts: i(α1z1+…+αn2n+β), β, αi?R, i=1,…, n; and (2) conjugation: f1(z11,…,zn1).  相似文献   

2.
We consider the mixed boundary value problem Au = f in Ω, B0u = g0in Γ?, B1u = g1in Γ+, where Ω is a bounded open subset of Rn whose boundary Γ is divided into disjoint open subsets Γ+ and Γ? by an (n ? 2)-dimensional manifold ω in Γ. We assume A is a properly elliptic second order partial differential operator on Ω and Bj, for j = 0, 1, is a normal jth order boundary operator satisfying the complementing condition with respect to A on Γ+. The coefficients of the operators and Γ+, Γ? and ω are all assumed arbitrarily smooth. As announced in [Bull. Amer. Math. Soc.83 (1977), 391–393] we obtain necessary and sufficient conditions in terms of the coefficients of the operators for the mixed boundary value problem to be well posed in Sobolev spaces. In fact, we construct an open subset T of the reals such that, if Ds = {u ? Hs(Ω): Au = 0} then for s ? = 12(mod 1), (B0,B1): Ds → Hs ? 12?) × Hs ? 32+) is a Fredholm operator if and only if s ∈T . Moreover, T = ?xewTx, where the sets Tx are determined algebraically by the coefficients of the operators at x. If n = 2, Tx is the set of all reals not congruent (modulo 1) to some exceptional value; if n = 3, Tx is either an open interval of length 1 or is empty; and finally, if n ? 4, Tx is an open interval of length 1.  相似文献   

3.
Let C be a convex set in Rn. For each y?C, the cone of C at y, denoted by cone(y, C), is the cone {α(x ? y): α ? 0 and x?C}. If K is a cone in Rn, we shall denote by K1 its dual cone and by F(K) the lattice of faces of K. Then the duality operator of K is the mapping dK: F(K) → F(K1) given by dK(F) = (span F) ∩ K1. Properties of the duality operator dK of a closed, pointed, full cone K have been studied before. In this paper, we study dK for a general cone K, especially in relation to dcone(y, K), where y?K. Our main result says that, for any closed cone K in Rn, the duality operator dK is injective (surjective) if and only if the duality operator dcone(y, K) is injective (surjective) for each vector y?K ~ [K ∩ (? K)]. In the last part of the paper, we obtain some partial results on the problem of constructing a compact convex set C, which contains the zero vector, such that cone (0, C) is equal to a given cone.  相似文献   

4.
It is known that the classical orthogonal polynomials satisfy inequalities of the form Un2(x) ? Un + 1(x) Un ? 1(x) > 0 when x lies in the spectral interval. These are called Turan inequalities. In this paper we will prove a generalized Turan inequality for ultraspherical and Laguerre polynomials. Specifically if Pnλ(x) and Lnα(x) are the ultraspherical and Laguerre polynomials and Fnλ(x) = Pnλ(x)Pnλ(1), Gnα(x) = Lnα(x)Lnα(0), then Fnα(x) Fnβ(x) ? Fn + 1α(x) Fn ? 1β(x) > 0, ? 1 < x < 1, ?12 < α ? β ? α + 1 and Gnα(x) Gnβ(x) ? Gn + 1α(x) Gn ? 1β(x) > 0, x > 0, 0 < α ? β ? α + 1. We also prove the inequality (n + 1) Fnα(x) Fnβ(x) ? nFn + 1α(x) Fn ? 1β(x) > An[Fnα(x)]2, ?1 < x < 1, ?12 < α ? β < α + 1, where An is a positive constant depending on α and β.  相似文献   

5.
Let (X, A) be a measurable space, Θ ? R an open interval and PΩA, Ω ? Θ, a family of probability measures fulfilling certain regularity conditions. Let Ωn be the maximum likelihood estimate for the sample size n. Let λ be a prior distribution on Θ and let Rn,x be the posterior distribution for the sample size n given x ? Xn. L: Θ × Θ → R denotes a loss function fulfilling certain regularity conditions and Tn denotes the Bayes estimate relative to λ and L for the sample size n. It is proved that for every compact K ? Θ there exists cK ≥ 0 such that
suptheta;∈KPtheta;nh{x∈Xn∥ Tn(x) ? ?nx|? cK(log n)n?} = o(n?12).
This theorem improves results of Bickel and Yahav [3], and Ibragimov and Has'minskii [4], as far as the speed of convergence is concerned.  相似文献   

6.
An elementary proof is given of the author's transformation formula for the Lambert series Gp(x) = Σn?1 n?pxn(1?xn) relating Gp(e2πiτ) to Gp(e2πiAτ), where p > 1 is an odd integer and Aτ = (aτ + b)(cτ + d) is a general modular substitution. The method extends Sczech's argument for treating Dedekind's function log η(τ) = πiτ12 ? G1(e2πiτ), and uses Carlitz's formula expressing generalized Dedekind sums in terms of Eulerian functions.  相似文献   

7.
New and more elementary proofs are given of two results due to W. Littman: (1) Let n ? 2, p ? 2n(n ? 1). The estimate ∫∫ (¦▽u¦p + ¦ut¦p) dx dt ? C ∫∫ ¦□u¦p dx dt cannot hold for all u?C0(Q), Q a cube in Rn × R, some constant C. (2) Let n ? 2, p ≠ 2. The estimate ∫ (¦▽(t)¦p + ¦ut(t)¦p) dx ? C(t) ∫ (¦▽u(0)¦p + ¦ut(0)¦p) dx cannot hold for all C solutions of the wave equation □u = 0 in Rn x R; all t ?R; some function C: RR.  相似文献   

8.
Let V denote a finite dimensional vector space over a field K of characteristic 0, let Tn(V) denote the vector space whose elements are the K-valued n-linear functions on V, and let Sn(V) denote the subspace of Tn(V) whose members are the fully symmetric members of Tn(V). If Ln denotes the symmetric group on {1,2,…,n} then we define the projection PL : Tn(V) → Sn(V) by the formula (n!)?1Σσ ? Ln Pσ, where Pσ : Tn(V) → Tn(V) is defined so that Pσ(A)(y1,y2,…,yn = A(yσ(1),yσ(2),…,yσ(n)) for each A?Tn(V) and yi?V, 1 ? i ? n. If xi ? V1, 1 ? i ? n, then x1?x2? … ?xn denotes the member of Tn(V) such that (x1?x2· ? ? ?xn)(y1,y2,…,yn) = Пni=1xi(yi) for each y1 ,2,…,yn in V, and x1·x2xn denotes PL(x1?x2? … ?xn). If B? Sn(V) and there exists x i ? V1, 1 ? i ? n, such that B = x1·x2xn, then B is said to be decomposable. We present two sets of necessary and sufficient conditions for a member B of Sn(V) to be decomposable. One of these sets is valid for an arbitrary field of characteristic zero, while the other requires that K = R or C.  相似文献   

9.
Presented in this report are two further applications of very elementary formulae of approximate differentiation. The first is a new derivation in a somewhat sharper form of the following theorem of V. M. Olovyani?nikov: LetNn (n ? 2) be the class of functionsg(x) such thatg(x), g′(x),…, g(n)(x) are ? 0, bounded, and nondecreasing on the half-line ?∞ < x ? 0. A special element ofNnis
g1(x) = 0 if ?∞ < x < ?1, g1(x) = (1 + x)nif ?1 ? x ? 0
. Ifg(x) ∈ Nnis such that
g(0) ? g1(0) = 1, g(n)(0) ? g1(n)(0) = n!
, then
g(v)(0) ? g1(v)(0)
for
1v = 1,…, n ? 1
. Moreover, if we have equality in (1) for some value of v, then we have there equality for all v, and this happens only if g(x) = g1(x) in (?∞, 0].The second application gives sufficient conditions for the differentiability of asymptotic expansions (Theorem 4).  相似文献   

10.
Let Ω be a simply connected domain in the complex plane, and A(Ωn), the space of functions which are defined and analytic on Ωn, if K is the operator on elements u(t, a1, …, an) of A(Ωn + 1) defined in terms of the kernels ki(t, s, a1, …, an) in A(Ωn + 2) by Ku = ∑i = 1naitk i(t, s, a1, …, an) u(s, a1, …, an) ds ? A(Ωn + 1) and I is the identity operator on A(Ωn + 1), then the operator I ? K may be factored in the form (I ? K)(M ? W) = (I ? ΠK)(M ? ΠW). Here, W is an operator on A(Ωn + 1) defined in terms of a kernel w(t, s, a1, …, an) in A(Ωn + 2) by Wu = ∝antw(t, s, a1, …, an) u(s, a1, …, an) ds. ΠW is the operator; ΠWu = ∝an ? 1w(t, s, a1, …, an) u(s, a1, …, an) ds. ΠK is the operator; ΠKu = ∑i = 1n ? 1aitki(t, s, a1, …, an) ds + ∝an ? 1tkn(t, s, a1, …, an) u(s, a1, …, an) ds. The operator M is of the form m(t, a1, …, an)I, where m ? A(Ωn + 1) and maps elements of A(Ωn + 1) into itself by multiplication. The function m is uniquely derived from K in the following manner. The operator K defines an operator K1 on functions u in A(Ωn + 2), by K1u = ∑i = 1n ? 1ait ki(t, s, a1, …, an) u(s, a, …, an + 1) ds + ∝an + 1t kn(t, s, a1, …, an) u((s, a1, …, an + 1) ds. A determinant δ(I ? K1) of the operator I ? K1 is defined as an element m1(t, a1, …, an + 1) of A(Ωn + 2). This is mapped into A(Ωn + 1) by setting an + 1 = t to give m(t, a1, …, an). The operator I ? ΠK may be factored in similar fashion, giving rise to a chain factorization of I ? K. In some cases all the matrix kernels ki defining K are separable in the sense that ki(t, s, a1, …, an) = Pi(t, a1, …, an) Qi(s, a1, …, an), where Pi is a 1 × pi matrix and Qi is a pi × 1 matrix, each with elements in A(Ωn + 1), explicit formulas are given for the kernels of the factors W. The various results are stated in a form allowing immediate extension to the vector-matrix case.  相似文献   

11.
Let Z(Sn;?(x)) denote the polynomial obtained from the cycle index of the symmetric group Z(Sn) by replacing each variable si by f(x1). Let f(x) have a Taylor series with radius of convergence ? of the form f(x)=xk + ak+1xk+1 + ak+2xk+2+? with every a1?0. Finally, let 0<x<1 and let x??. We prove that
limn→∞Z(Sn;?(x))xkn = Πi=1k(1?xi)?ak+1
This limit is used to estimate the probability (for n and p both large) that a point chosen at random from a random p-point tree has degree n + 1. These limiting probabilities are independent of p and decrease geometrically in n, contrasting with the labeled limiting probabilities of 1n!e.In order to prove the main theorem, an appealing generalization of the principle of inclusion and exclusion is presented.  相似文献   

12.
Let Fn be the ring of n × n matrices over the finite field F; let o(Fn) be the number of elements in Fn, and s(Fn) be the number of singular matrices in Fn. We prove that o(Fn)<s(Fn)1+1n(n-1) if n ? 2, and if n = 2 and o(F) ? 3, then s(Fn)1 + 1n2<o(Fn)<s(Fn)1+1n(n-1).  相似文献   

13.
In this paper iterative schemes for approximating a solution to a rectangular but consistent linear system Ax = b are studied. Let A?Cm × nr. The splitting A = M ? N is called subproper if R(A) ? R(M) and R(A1) ?R(M1). Consider the iteration xi = M2Nxi?1 + M2b. We characterize the convergence of this scheme to a solution of the linear system. When A?Rm×nr, monotonicity and the concept of subproper regular splitting are used to determine a necessary and a sufficient condition for the scheme to converge to a solution.  相似文献   

14.
Let (A, G, α) be a C1-dynamical system, where G is abelian, and let φ be an invariant state. Suppose that there is a neighbourhood Ω of the identity in G? and a finite constant κ such that Πi = 1n φ(xi1xi) ? κ Πi = 1n φ(xixi1) whenever xi lies in a spectral subspace Rαi), where Ω1 + … + Ωn ? Ω. This condition of complete spectral passivity, together with self-adjointness of the left kernel of φ, ensures that φ satisfies the KMS condition for some one-parameter subgroup of G.  相似文献   

15.
16.
For an n × n Hermitean matrix A with eigenvalues λ1, …, λn the eigenvalue-distribution is defined by G(x, A) := 1n · number {λi: λi ? x} for all real x. Let An for n = 1, 2, … be an n × n matrix, whose entries aik are for i, k = 1, …, n independent complex random variables on a probability space (Ω, R, p) with the same distribution Fa. Suppose that all moments E | a | k, k = 1, 2, … are finite, Ea=0 and E | a | 2. Let
M(A)=σ=1s θσPσ(A,A1)
with complex numbers θσ and finite products Pσ of factors A and A1 (= Hermitean conjugate) be a function which assigns to each matrix A an Hermitean matrix M(A). The following limit theorem is proved: There exists a distribution function G0(x) = G1x) + G2(x), where G1 is a step function and G2 is absolutely continuous, such that with probability 1 G(x, M(Ann12)) converges to G0(x) as n → ∞ for all continuity points x of G0. The density g of G2 vanishes outside a finite interval. There are only finitely many jumps of G1. Both, G1 and G2, can explicitly be expressed by means of a certain algebraic function f, which is determined by equations, which can easily be derived from the special form of M(A). This result is analogous to Wigner's semicircle theorem for symmetric random matrices (E. P. Wigner, Random matrices in physics, SIAM Review9 (1967), 1–23). The examples ArA1r, Ar + A1r, ArA1r ± A1rAr, r = 1, 2, …, are discussed in more detail. Some inequalities for random matrices are derived. It turns out that with probability 1 the sharpened form
lim supn→∞i=1ni(n)|2?6An62? 0.8228…
of Schur's inequality for the eigenvalues λi(n) of An holds. Consequently random matrices do not tend to be normal matrices for large n.  相似文献   

17.
In Rn let Ω denote a Nikodym region (= a connected open set on which every distribution of finite Dirichlet integral is itself in L2(Ω)). The existence of n commuting self-adjoint operators H1,…, Hnin L2(Ω) such that each Hj is a restriction of ?i ββxj (acting in the distribution sense) is shown to be equivalent to the existence of a set Λ ?Rn such that the restrictions to Ω of the functions exp iλjxj form a total orthogonal family in L2(Ω). If it is required, in addition, that the unitary groups generated by H1,…, Hn act multiplicatively on L2(Ω), then this is shown to correspond to the requirement that Λ can be chosen as a subgroup of the additive group Rn. The measurable sets Ω ?Rn (of finite Lebesgue measure) for which there exists a subgroup Λ ?Rn as stated are precisely those measurable sets which (after a correction by a null set) form a system of representatives for the quotient of Rn by some subgroup Γ (essentially the dual of Λ).  相似文献   

18.
Let L = ∑j = 1mXj2 be sum of squares of vector fields in Rn satisfying a Hörmander condition of order 2: span{Xj, [Xi, Xj]} is the full tangent space at each point. A point x??D of a smooth domain D is characteristic if X1,…, Xm are all tangent to ?D at x. We prove sharp estimates in non-isotropic Lipschitz classes for the Dirichlet problem near (generic) isolated characteristic points in two special cases: (a) The Grushin operator ?2?x2 + x2?2?t2 in R2. (b) The real part of the Kohn Laplacian on the Heisenberg group j ? 1n (??xj + 2yj??t)2 + (??yj ? 2xj??t)2 in R2n + 1. In contrast to non-characteristic points, C regularity may fail at a characteristic point. The precise order of regularity depends on the shape of ?D at x.  相似文献   

19.
If k is a perfect field of characteristic p ≠ 0 and k(x) is the rational function field over k, it is possible to construct cyclic extensions Kn over k(x) such that [K : k(x)] = pn using the concept of Witt vectors. This is accomplished in the following way; if [β1, β2,…, βn] is a Witt vector over k(x) = K0, then the Witt equation yp ? y = β generates a tower of extensions through Ki = Ki?1(yi) where y = [y1, y2,…, yn]. In this paper, it is shown that there exists an alternate method of generating this tower which lends itself better for further constructions in Kn. This alternate generation has the form Ki = Ki?1(yi); yip ? yi = Bi, where, as a divisor in Ki?1, Bi has the form (Bi) = qΠpjλj. In this form q is prime to Πpjλj and each λj is positive and prime to p. As an application of this, the alternate generation is used to construct a lower-triangular form of the Hasse-Witt matrix of such a field Kn over an algebraically closed field of constants.  相似文献   

20.
Let {Xn}n≥1 be a sequence of independent and identically distributed random variables. For each integer n ≥ 1 and positive constants r, t, and ?, let Sn = Σj=1nXj and E{N(r, t, ?)} = Σn=1 nr?2P{|Sn| > ?nrt}. In this paper, we prove that (1) lim?→0+?α(r?1)E{N(r, t, ?)} = K(r, t) if E(X1) = 0, Var(X1) = 1, and E(| X1 |t) < ∞, where 2 ≤ t < 2r ≤ 2t, K(r, t) = {2α(r?1)2Γ((1 + α(r ? 1))2)}{(r ? 1) Γ(12)}, and α = 2t(2r ? t); (2) lim?→0+G(t, ?)H(t, ?) = 0 if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(|X1|t) < ∞, where G(t, ?) = E{N(t, t, ?)} = Σn=1nt?2P{| Sn | > ?n} → ∞ as ? → 0+ and H(t, ?) = E{N(t, t, ?)} = Σn=1 nt?2P{| Sn | > ?n2t} → ∞ as ? → 0+, i.e., H(t, ?) goes to infinity much faster than G(t, ?) as ? → 0+ if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(| X1 |t) < ∞. Our results provide us with a much better and deeper understanding of the tail probability of a distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号