首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thanks to the use of localized orbitals and the subsequent possibility of neglecting long-range interactions, the linear-scaling methods have allowed to treat large systems at ab initio level. However, the limitation of the number of active orbitals in a complete active space self consistent-field (CASSCF) calculation remains unchanged. The method presented in this paper suggests to divide the system into fragments containing only a small number of active orbitals. Starting from a guess wave function, each orbital is optimized in its corresponding fragment, in the presence of the other fragments. Once all the fragments have been treated, a new set of orbitals is obtained. The process is iterated until convergence. At the end of the calculation, a set of active orbitals is obtained, which is close to the exact CASSCF solution, and an accurate CASSCF energy can be estimated.  相似文献   

2.
We devise and apply a simple computational scheme for obtaining localized bonding schemes and their weights from a CASSCF wave function. These bonding schemes are close to resonance structures drawn by chemists. Firstly, a CASSCF wave function is computed. Secondly, the CASSCF computation is repeated but now the delocalized complete active space MOs are substituted by Weinhold's localized natural atomic orbitals. In this way the original CASSCF wave function is represented by a sequence of Slater determinants composed of localized natural atomic orbitals. Thus, a standard CASSCF wave function can be reinterpreted in terms of a local picture. To test the method we obtain localized bonding schemes and their weights for the ground and the pi-pi* excited state of ethylene. Moreover, bonding schemes and their weights are derived for the ground, the 1(1)B(u), and the 2(1)Ag pi-pi* excited states of trans-butadiene. The large weight bonding schemes are shown to be a qualitative indicator for the known photochemistry of butadiene. The remarkable stability of the Arduengo carbene is discussed by obtaining bonding schemes that indicate a stabilizing delocalization of the pi electrons. We illustrate that the large weight bonding schemes are in line with the observed reactivity of the Arduengo carbene.  相似文献   

3.
The external localization procedure of Magnasco and Perico is extended to the unoccupied molecular orbitals of the Fock-operator. The formal correspondence between bonding orbitals and localized antibonding MOs is demonstrated. Localized occupied and virtual one-electron functions are calculated within a semiempirical INDO-Hamiltonian and are analyzed; the externally localized occupied MOs are compared with energy localized orbitals computed by the Edmiston and Ruedenberg procedure. Various applications of the fully localized (occupied and virtual) MO set are discussed.  相似文献   

4.
In this article, we present a study of the localization and properties of the molecular orbitals (MOs) of polyatomic systems by using a comprehensive version of the G1 model. In this version, the wave function is written as a DODS product of univocally determined spin orbitals (MOs), “projected” on the singlet ground state. A procedure for determining the MOs is given and applied to the BeH2 ground state. Equivalent split shell and localized MOs are found. The Be orbitals are seen to exhibit sp hybridization and the localized valence MOs are found to produce − 13.7 kcal/mol localization energy. Multistructural calculations are carried out and show that the present approach is able to describe localized and well-oriented bonds whenever the molecule under study presents only a single well-defined nonresonant chemical structure. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
A multireference configurational interaction method based on the separated electron pair (SEP) wave functions, SEP‐CI approach, has been developed as an approximation to the traditional CASSCF method. It differs from the CASSCF method in that active orbitals are obtained from the SEP wave function without further optimization in the subsequent CI calculations, and the active space is automatically constructed according to the occupation coefficients of SEP natural orbitals. These features make the present SEP‐CI method computationally much less demanding than the CASSCF method. The applicability of the SEP‐CI method is illustrated with sample calculations on the insertion reaction of BeH2 and dissociation energies of LiH, BH, FH, H2O, and N2. © 2005 Wiley Periodicals, Inc. J Comput Chem 27: 39–47, 2006  相似文献   

6.
A complete active space self-consistent field (CASSCF) calculation of the pi system of a conjugated molecule enables one to define optimal valence pi and pi* molecular orbitals (MOs). One may define from them a set of atom-centered orthogonal pi orbitals, one per carbon atom, and the resulting upper multiplet is used to define the pi-electron delocalization energy. This quantity is confirmed to be slightly distortive, i.e., to prefer bond-alternated geometries. One may also define strongly localized bond MOs corresponding to a Kekule structure and then perturb the associated strongly localized single determinant under the effect of the delocalization between the bonds and of the electronic correlation. The third order of perturbation introduces the contribution of the cyclic circulation of the electrons around the benzene ring, i.e. the aromatic energy contribution. Its value is about 1.5 eV. It is antidistortive, but remains important under bond alternation. The cyclic correlation effects are of minor importance.  相似文献   

7.
Potential energy curves for inner-shell states of nitrogen and carbon dioxide molecules are calculated by inner-shell complete active space self-consistent field (CASSCF) method, which is a protocol, recently proposed, to obtain specifically converged inner-shell states at multiconfigurational level. This is possible since the collapse of the wave function to a low-lying state is avoided by a sequence of constrained optimization in the orbital mixing step. The problem of localization of K-shell states is revisited by calculating their energies at CASSCF level based on both localized and delocalized orbitals. The localized basis presents the best results at this level of calculation. Transition energies are also calculated by perturbation theory, by taking the above mentioned MCSCF function as zeroth order wave function. Values for transition energy are in fairly good agreement with experimental ones. Bond dissociation energies for N(2) are considerably high, which means that these states are strongly bound. Potential curves along ground state normal modes of CO(2) indicate the occurrence of Renner-Teller effect in inner-shell states.  相似文献   

8.
This work proposes to take benefit of the localizability of both occupied and virtual inactive molecular orbitals (MOs) in the context of complete active space singles and doubles configuration interaction (CAS-SDCI). The doubly occupied MOs are partitioned into blocks, or regions, corresponding to a subset of adjacent bonds and lone pairs. The localized virtual MOs are attributed to these regions from a spatial criterion. Then a series of limited post-CAS-CI calculations is performed, using the same reference space, one for each block, and then one per pair of blocks. From these independent CI calculations contracted external functions are defined for each block or for each pair of blocks, and for each state. A general multistate formalism is proposed, the CI matrix being expressed in the space defined by the CAS and the contracted functions. Preliminary numerical studies, resting on the evaluation of single-block and two-block contributions to the dynamical correlation energy of each state, are presented. Provided that size-consistency corrections are taken into account the results of the procedure are shown to be in excellent agreement with those of the nonpartitioned post-CAS-CI. The computational benefits of this evidently parallelizable procedure are underlined.  相似文献   

9.
A general strategy is described for the evaluation of transition matrix elements between pairs of full class CI wave functions built up from mutually nonorthogonal molecular orbitals. A new method is proposed for the counter‐transformation of the linear expansion coefficients of a full CI wave function under a nonsingular transformation of the molecular‐orbital basis. The method, which consists in a straightforward application of the Cauchy–Binet formula to the definition of a Slater determinant, is shown to be simple and suitable for efficient implementation on current high‐performance computers. The new method appears mainly beneficial to the calculation of miscellaneous transition matrix elements among individually optimized CASSCF states and to the re‐evaluation of the CASCI expansion coefficients in Slater‐determinant bases formed from arbitrarily rotated (e.g., localized or, conversely, delocalized) active molecular orbitals. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

10.
Recent advances in orbital localization algorithms are used to minimize the Pipek–Mezey localization function for both occupied and virtual Hartree–Fock orbitals. Virtual Pipek–Mezey orbitals for large molecular systems have previously not been considered in the literature. For this work, the Pipek–Mezey (PM) localization function is implemented for both the Mulliken and a Löwdin population analysis. The results show that the standard PM localization function (using either Mulliken or Löwdin population analyses) may yield local occupied orbitals, although for some systems the occupied orbitals are only semilocal as compared to state‐of‐the‐art localized occupied orbitals. For the virtual orbitals, a Löwdin population analysis shows improvement in locality compared to a Mulliken population analysis, but for both Mulliken and Löwdin population analyses, the virtual orbitals are seen to be considerably less local compared to state‐of‐the‐art localized orbitals. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
12.
A mathematically well-defined measure of localization is presented based on Mulliken's orbital populations. It is shown that this quantity equals 1 for core- and lone-pair orbitals, 2 for two-atomic bonds, 6 for benzene rings, etc., and it is applicable for delocalized canonical HF orbitals as well. The definition of this quantity is general in the sense that ab initio MOS with overlapping AO expansion, and semiempirical wave functions using the ZDO approximation as well, can be treated. The localization quantity is essentially “intrinsic,” i.e., no subdivision of the molecule is required. For N-electron wave functions, mean delocalization can be defined. This measure is not invariant to unitary transformations of the one-electron orbitals, characterizing in this way the localized or extended representation of the N-electron wave function. It can be proven, however, that for unitary transformed wave functions a maximum delocalization exists which depends only on the physical (N-electron) properties of the molecule. It is shown that inhomogeneous charge distribution can cause strong electron localization in molecular systems. The delocalization of the canonical Hartree–Fock orbitals, the Parr–Chen circulant orbitals, and the optimum delocalized orbitals is studied by numerical calculations in extended systems.  相似文献   

13.
Analytical solutions for localized states of zigzag-type nanotube (NT) fragments with various combinations of Klein and Fujita borders are considered using the Hückel approach. It is shown that the equations for determining molecular orbitals (MOs) in systems with two Klein edges are similar to equations for systems with two Fujita edges. An analytical formula for the energies of all ?? MOs is obtained for systems that have a Klein edge on one side and a Fujita edge on the other. It is established that these systems have n orbitals with energy ?? that are localized on the Fujita and Klein edges in dependence on the MO symmetry. The degeneracy of edge orbitals indicates that there is a tendency toward single occupancy of them and to the appearance of spin (magnetic) properties. In addition, the energies of the states of different multiplicity for NT fragments (8, 0) are calculated using the CASSCF approach. It is shown that the ground state has a multiplicity of 9, as was also indicated by estimates obtained using the density functional method (B3LYP). It is concluded that zigzag-type NTs with asymmetric edges have a tendency to exhibit spin properties. It is noted that the construction of nanoscale magnetic materials based on them is very promising.  相似文献   

14.
A localized molecular orbital has been found to extend slightly and regularly into regions away from the chemical bond which contains most of its charge cloud. This was made the basis for a method of transferring localized orbitals among similar molecules. Each localized orbital induces a set of so-called molecule invariant fragments consisting of one bond fragment and collections of geminal fragments, vicinal fragments, and third and fourth neighbor fragments. Localized orbital expansion coefficients in a hybrid basis can be calculated for these molecule invariant fragments without solving any equations or performing any laborious computations. The present work is an application to acylic hydrocarbons. The results are based on the analysis of 33 INDO-SCF molecular orbital wavefunctions in the localized representation. Computational methods for obtaining close approximations to localized orbitals are also discussed. The application of a suggested pseudo-eigenvalue localization method and its accompanying self-consistent iteration process are found to not converge.  相似文献   

15.
This article describes a novel algorithm for the optimization of valence bond self‐consistent field (VBSCF) wave function for a complete active space (CAS), so‐called VBSCF(CAS). This was achieved by applying the strategies adopted in the optimization of CASSCF wave functions to VBSCF(CAS) wave functions, using an auxiliary orthogonal orbital set that generates the same configuration space as the original nonorthogonal orbital set. Theoretical analyses and test calculations show that the VBSCF(CAS) method shares the same computational scaling as CASSCF. The test calculations show the current capability of VBSCF method, which involves millions of VB structures. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Spin-coupled (SC) theory, an ab initio valence bond (VB) approach which uses a compact and an easy-to-interpret single-orbital product wave function comparable in quality to a ‘N in N’ complete-active-space self-consistent field [CASSCF(N,N)] construction, is extended to ‘N in M’ (N ≠ M) active spaces. The SC(N,M) wave function retains the essential features of the original SC model: It involves just the products of nonorthogonal orbitals covering all distributions of N electrons between M orbitals in which as few orbitals as possible, |N – M|, are doubly occupied (for N > M) or missing (for N < M) and all other orbitals are singly occupied; each of these products is combined with a flexible spin function which allows any mode of coupling of the spins of the orbitals within the product. The SC(N,M) wave function remains much more compact than a CASSCF(N,M) construction; for example, the SC(6,7) wave function includes 35 configuration state functions (CSFs) as opposed to the 490 CSFs in the CASSCF case. The essential features of the SC(N,M) method are illustrated through a SC(6,5) calculation on the cyclopentadienyl anion, C5H5(–), and a SC(6,7) calculation on the tropylium cation, C7H7(+). The SC(6,5) and SC(6,7) wave functions for C5H5(–) and C7H7(+) are shown to provide remarkably clear modern VB models for the electronic structures of these aromatic cyclic ions which closely resemble the well-known SC model of benzene and yet recover almost all of the correlation energy included in the corresponding CASSCF(6,5) and CASSCF(6,7) wave functions: over 97% in the case of C5H5(–) and over 95% in the case of C7H7(+).  相似文献   

17.
18.
A new formulation of ab initio theory is presented that treats a large molecule in terms of wave functions of its constituent molecular subunits (to be called fragments). The method aims to achieve near conventional ab initio accuracy but using a truncated set of fragment orbitals with a consequent drastic reduction of computing time and storage requirement. Illustrative calculations are presented for the molecule amino‐nitro‐stilbene. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

19.
The electrophilic attachment of chlorine to ethylene in aqueous solution is studied using the complete active space self‐consistent field (CASSCF) method combined with the polarizable continuum model in a version which includes electrostatic, repulsion, and dispersion solute–solvent interactions. The C2v symmetry is maintained for all the geometries considered, and the active space is generated distributing six electrons in five orbitals. After the CASSCF calculation a valence bond (VB) analysis has been performed along an approximate reaction coordinate by projecting the wave function onto a set of four classical structures; a reliable explanatory model of the rearrangement of the electronic structure for this process is then derived. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 74: 59–67, 1999  相似文献   

20.
Electronic wavefunctions that describe molecules in the full optimized reaction space (FORS) are multiconfigurational wavefunctions which are invariant under non-singular linear transformations of the occupied molecular orbitals. They offer therefore a considerably wider scope for orbital interpretations than the single-configuration Hartree-Fock approximation. For example they can be analyzed in terms of natural MOs and in terms of localized MOs. The latter turn out to be remarkably atomic in character and a new localization procedure can be formulated which yields atom-adapted molecular orbitals. These have the character of minimal-basis-set AOs that are optimally adapted to the molecular environment and furnish an unambigious atomic population analysis. On the other hand, chemically adapted molecular orbitals can be defined by an appropriate compromise between natural orbitals and localized orbitals. The freedom to use, as configuration-generating molecular orbitals, atom-adapted FORS MOs as well as chemically adapted FORS MOs makes FORS wavefunctions particularly suitable for chemical interpretations. The ensuing analysis establishes the minimal basis set (in molecule-adapted form) as a theoretically sound concept for the understanding of accurate molecular wavefunctions. An illustrative example is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号