首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The elastostatic axisymmetric problem for a long thick-walled cylinder containing an axisymmetric circumferential internal crack with two claddings is considered. The claddings having different elastic properties than the hollow cylinder are assumed to be bonded to inner and outer wall of the hollow cylinder. The problem is formulated in terms of a singular integral equation of a well known type, the derivative of the crack surface displacement being the density function, using the standard transform technique. By using appropriate quadrature formulas, the integral equation is reduced to a system of linear algebraic equations. This system is solved numerically and the related stress-intensity factors are calculated for the cases of hollow cylinder with two claddings bonded to inner and outer wall of the cylinder, a cladding bonded to inner wall of the cylinder, a cladding bonded to outer wall of the cylinder and no cladding under axial tensile load. The influence of the geometrical configuration, the claddings and internal crack length on the stress-intensity factors is shown graphically.  相似文献   

2.
A theoretical method for analyzing the axisymmetric plane strain elastodynamic problem of a non-homogeneous orthotropic hollow cylinder is developed. Firstly, a new dependent variable is introduced to rewrite the governing equation, the boundary conditions and the initial conditions. Secondly, a special function is introduced to transform the inhomogeneous boundary conditions to homogeneous ones. By virtue of the orthogonal expansion technique, the equation with respect to the time variable is derived, of which the solution can be obtained. The displacement solution is finally obtained, which can be degenerated in a rather straightforward way into the solution for a homogeneous orthotropic hollow cylinder and isotropic solid cylinder as well as that for a non-homogeneous isotropic hollow cylinder. Using the present method, integral transform can be avoided and it can be used for hollow cylinders with arbitrary thickness and subjected to arbitrary dynamic loads. Numerical results are presented for a non-homogeneous orthotropic hollow cylinder subjected to dynamic internal pressure. The project supported by the National Natural Science Foundation of China (10172075 and 10002016)  相似文献   

3.
The transient thermal response of a thick orthotropic hollow cylinder with finite length is studied by a high order shell theory. The radial and axial displacements are assumed to have quadratic and cubic variations through the thickness, respectively. It is important that the radial stress is approximated by a cubic expansion satisfying the boundary conditions at the inner and outer surfaces, and the corresponding strain should be least-squares compatible with the strain derived from the strain-displacement relation. The equations of motion are derived from the integration of the equilibrium equations of stresses, which are solved by precise integration method (PIM). Numerical results are.obtained, and compared with FE simulations and dynamic thermo-elasticity solutions, which indicates that the high order shell theory is capable of predicting the transient thermal response of an orthotropic (or isotropic) thick hollow cylinder efficiently, and for the detonation tube of actual pulse detonation engines (PDE) heated continuously, the thermal stresses will become too large to be neglected, which are not like those in the one time experiments with very short time.  相似文献   

4.
杨昌锦  李尧臣 《力学季刊》2005,26(1):134-143
圆环形的压电材料器件在智能结构中得到了广泛的应用。本文推导了横观各向同性功能梯度压电材料圆环在内、外边界上给定位移和电势情况下的一般解。极化方向在圆环的半径方向,材料常数的梯度方向也设定在半径方向,并可表示为半径r的幂,本构关系为线性。然后推导了压电圆环外壁固定、接地,内壁沿垂向有一微小位移、电势分别为余弦分布和均匀分布的问题的精确解,并计算了该问题在这两种电势情况下产生的无量纲形式的径向和环向位移、电势、应力及电位移沿径向分布的数值结果。计算中考虑了不同的材料梯度,以及内壁的位移与电势的不同比例。  相似文献   

5.
Pengpeng Shi  Sha Sun  Xing Li 《Meccanica》2013,48(2):415-426
The purpose of this present work is to study the arc-shaped interfacial cracking problem in a hollow cylinder that consists of an inner orthotropic dielectric layer and an outer functionally graded piezoelectric layer. Based on the method of variable separation, the problem is reduced to a Cauchy singular integral equation, which is solved by the Lobatto-Chebyshev quadrature technique. Numerical results of the stress intensity factor are obtained and the effects of geometrical and physical quantities on the fracture parameter are surveyed in details.  相似文献   

6.
Steady-periodic heat conduction with relaxation time in an infinitely long hollow cylinder is considered. Four boundary value problems, with boundary conditions of the first and of the second kind, are solved analytically. The solution for a solid cylinder with a sinusoidally varying surface temperature is obtained as a special case of a solution found for the hollow cylinder. The effects of the relaxation time on the steady-periodic temperature field are analysed, in details, for a solid cylinder with a sinusoidally varying surface temperature and for a hollow cylinder with a sinusoidally varying heat flux at the inner surface and with a constant temperature at the outer surface. The results show that thermal resonances may occur and suggest that accurate measurements of the relaxation time could be obtained by means of experiments on steady-periodic heat conduction in cylindrical geometry. Received on 15 April 1997  相似文献   

7.
The asymmetric transient response of a hollow cylinder confining a compressible fluid is analyzed. The cylinder is excited by radial displacement prescribed over a rectangular footprint on the cylinder’s outer surface. The special case of plane-strain is also analyzed. A comparison of dilatational stress in the solid cylinder and fluid pressure in the fluid-filled cylinder reveals how a projectile may decelerate faster in the latter.  相似文献   

8.
The piezoelectric phenomenon has been exploited in science and engineering for decades. Recent advances in smart structures technology have lead to a resurgence of interest in piezoelectricity, and in particular, in the solution of fundamental boundary-value problems. In this paper, we develop an analytic solution to the axisymmetric problem of an infinitely long, radially polarized, radially orthotropic piezoelectric hollow circular cylinder. The cylinder is subjected to uniform internal pressure, or a constant potential difference between its inner and outer surfaces, or both. An analytic solution to the governing equilibrium equations (a coupled system of second-order ordinary differential equations) is obtained. On application of the boundary conditions, the problem is reduced to solving a system of linear algebraic equations. The stress distributions in the cylinder are obtained numerically for two typical piezoceramics of technological interest, namely PZT-4 and BaTiO3. It is shown that the hoop stresses in a cylinder composed of these materials can be made virtually uniform throughout the cross-section by applying an appropriate set of boundary conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
It has been known for some time that certain radial anisotropies in some linear elasticity problems can give rise to stress singularities which are absent in the corresponding isotropic problems. Recently related issues were examined by other authors in the context of plane strain axisymmetric deformations of a hollow circular cylindrically anisotropic linearly elastic cylinder under uniform external pressure, an anisotropic analog of the classic isotropic Lamé problem. In the isotropic case, as the external radius increases, the stresses rapidly approach those for a traction-free cavity in an infinite medium under remotely applied uniform compression. However, it has been shown that this does not occur when the cylinder is even slightly anisotropic. In this paper, we provide further elaboration on these issues. For the externally pressurized hollow cylinder (or disk), it is shown that for radially orthotropic materials, the maximum hoop stress occurs always on the inner boundary (as in the isotropic case) but that the stress concentration factor is infinite. For circumferentially orthotropic materials, if the tube is sufficiently thin, the maximum hoop stress always occurs on the inner boundary whereas for sufficiently thick tubes, the maximum hoop stress occurs at the outer boundary. For the case of an internally pressurized tube, the anisotropic problem does not give rise to such radical differences in stress behavior from the isotropic problem. Such differences do, however, arise in the problem of an anisotropic disk, in plane stress, rotating at a constant angular velocity about its center, as well as in the three-dimensional problem governing radially symmetric deformations of anisotropic externally pressurized hollow spheres. The anisotropies of concern here do arise in technological applications such as the processing of fiber composites as well as the casting of metals.  相似文献   

10.
A thermoelastic problem of a circular annulus made of functionally graded materials with an arbitrary gradient is investigated. Different from previous works, our analysis neither requires a special form of the gradient of material properties nor demands partitioning the entire structure into a multilayered homogeneous structure. Instead, we propose a new method for solving the thermoelastic problem of a functionally graded circular annulus by transforming it to a Fredholm integral equation. The distribution of thermal stresses and radial displacement can be obtained by solving the resulting equation. Illustrative examples are given to show the effects of varying gradients on the thermal stresses and radial displacement for given temperature changes at the inner and outer surfaces. The results indicate that the thermal stresses can be relaxed for specified gradients, which is beneficial to design an inhomogeneous annulus to maintain structural integrity.  相似文献   

11.
The forced vibrations of a cylindrical orthotropic shell are studied. Two types of boundary conditions on the outer surface are examined considering that the displacement vector prescribed on the inner surface varies harmonically with time. Asymptotic solutions of associated dynamic equations of three-dimensional elasticity are found. Amplitudes of forced vibrations are determined and conditions under which resonance occurs are established. Boundary-layer functions are defined. The rate of their decrease with distance from the ends inside the shell is determined. A procedure of joining solutions for the internal boundary-layer problem is outlined in the case for the, if clamping boundary conditions are prescribed at the ends  相似文献   

12.
The problem of identifying the law of time variation in the temperature of one boundary surface of a two-layer cylinder and its thermal and thermostressed state from the temperature and radial displacement of the other surface is formulated and solved. The inverse problem of thermoelasticity to which the problem posed is reduced is analyzed for well-posedness. The solution of the direct problem of thermoelasticity is used to numerically test the technique of solving the inverse problem __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 1, pp. 40–47, January 2008.  相似文献   

13.
In this paper, we proposed a model of generalized magneto-thermoelastic for orthotropic hollow cylinder whose surfaces are subjected to a thermal relaxation under the effect of rotation with one relaxation time. The system of fundamental equations is solved by using an implicit finite-difference scheme. A numerical method is used to calculate the temperature, displacement and the components of stresses with time and through the radial of the cylinder. Numerical results are given and illustrated graphically for each case considered. The results indicate that the effect of rotation, inhomogeneity and magnetic field are very pronounced. Comparison made with the results predicted by the theory of generalized magneto-thermoelasticity with one relaxation time in the absence of rotation.  相似文献   

14.
The three-dimensional theory of elasticity is used to study the free vibrations of an anisotropic hollow cylinder with different boundary conditions at the ends. The relevant problem is solved by a numerical-and-analytic method. Spline approximation and collocation is used to reduce the partial differential equations of elasticity to a boundary-value problem for a system of ordinary differential equations of high order for the radial coordinate, which is solved using the stable discrete-orthogonalization and incremental-search methods. The calculated results for an orthotropic inhomogeneous cylinder with boundary conditions of several types are presented Translated from Prikladnaya Mekhanika, Vol. 44, No. 10, pp. 74–85, October 2008.  相似文献   

15.
The present paper studies the dispersion relation of the radial vibrations of an orthotropic cylindrical tube. The effects of the magnetoelastic interaction on the problem are investigated. The problem is represented by the equations of elasticity taking into account the effect of the magnetic field as given by Maxwell's equations in the quasi-static approximation. The stress free conditions on the inner and outer surfaces of the hollow cylindrical cube are satisfied to form a dispersion relation in terms of the wavelength, the cylinder radii and the material constants. This study shows that waves in a solid body propagating under the influence of a superimposed magnetic field can differ significantly from those propagating in the absence of a magnetic field. The results have been verified numerically and represented graphically.  相似文献   

16.
Elastic analyses of heterogeneous hollow cylinders   总被引:3,自引:0,他引:3  
Two different kinds of heterogeneous elastic hollow cylinders are studied in the present paper. One is a multi-layered cylinder with different values in different layers for both elastic modulus and Poisson’s ratio. Another is an elastic hollow cylinder with continuously graded material properties. By introducing two recursive algorithms, the extrusion stresses between two neighbor layers in the multi-layered cylinder submitted to uniform pressures on the inner and outer surfaces can be simply determined. Then the exact solutions of the multi-layered structure can be found based on Lamé’s solution. For the hollow cylinder with continuously graded properties, the displacement method is used. Both Whittaker equation and hyper-geometric equation are derived and successfully solved, and then the exact solutions are found. The results obtained in the present paper are compared with the numerical solutions and good agreements are found. At the end of the present paper, some inherent properties of these two different kinds of heterogeneous elastic hollow cylinders are presented and discussed. The results obtained in the present paper are useful in the design and analysis for composites reinforced by unidirectional fiber layers.  相似文献   

17.
This paper presents a solution of the problem of unsteady heat transfer in a three-layer hollow sphere in a central-symmetric formulation with various time-dependent boundary conditions on the inner and outer surfaces. In each layer of the sphere there is heat release of known intensity which depends on the radial coordinate and time. The solution is obtained by a finite integral transform on the radial coordinate. A numerical solution is presented for one version of the boundary conditions. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 1, pp. 78–84, January–February, 2009.  相似文献   

18.
Thermoelastic transient response of multilayered annular cylinders of infinite lengths subjected to known temperature at traction-free inner and outer surfaces are considered. A method based on the Laplace transformation and finite difference method has been developed to analyze the thermoelasticity problem. Using the Laplace transform with respect to time, the general solutions of the governing equation are obtained in transform domain. The solution is obtained by using the matrix similarity transformation and inverse Laplace transform. Solutions for the temperature and thermal stress distributions in a transient state were obtained. It was found that the temperature distribution, the displacement and the thermal stresses change slightly as time increases. There is no limit of number of annular layers of the cylinder in the presented computational procedures.  相似文献   

19.
 In this paper the radial deformation and the corresponding stresses in a non-homogeneous hollow elastic cylinder rotating about its axis with a constant angular velocity is investigated. The material of the cylinder is assumed to the non-homogeneous and cylindrically orthotropic. The system of fundamental equations is solved by means of a finite difference method and the numerical calculations are carried out for the temperature, the components of displacement and the components of stress with the time t and through the thickness of the cylinder. The results indicate that the effect of inhomogeneity is very pronounced. Received on 21 December 2000  相似文献   

20.
The antiplane stress analysis of two anisotropic finite wedges with arbitrary radii and apex angles that are bonded together along a common edge is investigated. The wedge radial boundaries can be subjected to displacement-displacement boundary condi- tions, and the circular boundary of the wedge is free from any traction. The new finite complex transforms are employed to solve the problem. These finite complex transforms have complex analogies to both kinds of standard finite Mellin transforms. The traction free condition on the crack faces is expressed as a singular integral equation by using the exact analytical method. The explicit terms for the strength of singularity are extracted, showing the dependence of the order of the stress singularity on the wedge angle, material constants, and boundary conditions. A numerical method is used for solving the resul- tant singular integral equations. The displacement boundary condition may be a general term of the Taylor series expansion for the displacement prescribed on the radial edge of the wedge. Thus, the analysis of every kind of displacement boundary conditions can be obtained by the achieved results from the foregoing general displacement boundary condition. The obtained stress intensity factors (SIFs) at the crack tips are plotted and compared with those obtained by the finite element analysis (FEA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号