首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 141 毫秒
1.
The effects of cyclopentadienyl ring size on the geometry of bimetallic organosamarium complexes have been studied by comparing the X-ray crystal structure of [(C5H4Me)2(THF)Sm(μ-Cl)]2, prepared from KC5H4Me and SmCl3 in THF, with C5Me5 analogs. The complex crystallizes from THF at −30°C in space group Pbcn with a = 20.312(5), b = 9.626(2), c = 16.225(3) Å, V = 3172.5(12) Å3 and Dcalc = 1.74 g cm−3 for Z = 4. Least-squares refinement of the model based on 1759 reflections [|Fo| > 2.0σ(|Fo|)] converged to a final RF = 5.0%. The complex adopts a geometry which has a molecular two-fold rotation axis perpendicular to the Sm2Cl2 plane and a crystallographic inversion center. Hence, both methyl groups of each (C5H4Me)2Sm unit are located on the side opposite of the THF ligands, which are trans to each other, and the four C5H4Me ring centroids define a square plane. The Sm---Cl distances are 2.759(3) and 2.819(3) Å.  相似文献   

2.
Irradiation of the 30-electron Mo25-C5Me5)2(CO)4 and Re2(CO)10 in toluene solution (containing H2O) afforded (in 1–2% yields) a novel triangular metal cluster, (η5-C5Me5)3Mo3(CO)42-H)(η3-O) (1), which was characterized by a single-crystal X-ray diffraction study. Compound 1, of pseudo Cs-m symmetry, has a triangulo-Mo33-O) core with composite Mo---H---Mo and Mo---Mo electron-pair bonds along one unusually short edge (2.660(1) Å) and Mo--- electron-pair bonds along the other two edges (2.916(1) and 2.917(1) Å). The edge-bridged hydride ligand, which displays a characteristic high-field proton NMR resonance at δ −17.79 ppm, was not found from the crystallographic determination but was located via a quantitative potential-energy-minimization method. This procedure unambiguously established that the optimized hydrogen position, which corresponds to a distinct coordination site with identical Mo---H distances of 1.85 Å, is the only one that can be sterically occupied by a metal-bound hydride ligand. This 46-electron species is the first electron-deficient trimolybdenum cluster containing a monoprotonated Mo---Mo double bond; its existence is attributed to ligand overcrowding due to the bulky pentamethylcyclopentadienyl rings. Black (η5- C5Me5)3Mo3(CO)42-H)(η3-O) · 1/2THF crystallizes with two formula species in a triclinic unit cell of P1 symmetry with a 8.603(4), b 11.115(4), c 19.412(11) Å, 80.69(4)°, β 101.10(4)°, and γ 98.88(3)° at −40° C. Least-squares refinement (RAELS with 221 variables) of one independent Mo3 molecule and a centrosymmetrically-disordered THF molecule converged at R1(F) 5.62%, R2(F 6.88% for 8460 independent diffractometry data (I0 ρ 3σ(I0 collected at −40° C with Mo-K radiation  相似文献   

3.
The reaction between metallic barium and fluoroisopropanol or alcoholysis of [Ba(OPri)2] produces a pentanuclear fluoroalkoxide. Its X-ray structure determination showed its formulation to correspond to Ba55-OH)[μ3-OCH(CF3)2]42-OCH(CF3)2]4 [OCH(CF3)2](THF)4(H2O)·THF. The metallic core is based on a square pyramid encapsulating an hydroxo ligand. In addition to the barium---alkoxide bonds [2.53(3)–2.86(3) Å] neutral O-donors, four THF [2.82(2)–2.86(3) Å] and one H2O [2.79(3) Å] and secondary barium---fluorine interactions [2.99(2)–3.31(2) Å] ensure high coordination numbers, from 9 to 11 for the metal centers. Hydrogen bonding between the apical fluoroisopropoxide, the water molecule and one THF molecule, non-bonded to a metal center, accounts for the stability of the hydrate and illustrates the Lewis acidity of fluoroalkoxides. Thermal decomposition leads to BaF2.  相似文献   

4.
Estertn compounds, (MeO2CCH2CH2)2SnX2 [X2 = I2 (2); X2 = Br2 (9); X2 = Cl, Br (4)) or X2 = (NCS)2 (3)] have been obtained by halide exchange reactions of (MeO2CCH2CH2)2SnCl2. Crystal structure determinations of 2–4 revealed chelating MeO2CCH2CH2 units with distorted octahedral geometries at tin. The Sn---O bond lengths in the isothiocyanato complex, 3, are shorter [2.390(11) to 2.498(12), mean 2.439 Å], with the chelate bite angles, C---Sn---O, larger [74.3(7) to 78.2(6), mean 76.0°] than those in the halide analogues 2 and 4 [Sn---O = 2.519(2) to 2.541(8), mean 2.530 Å; C---Sn---O 72.8(3) to 73.9(4), mean 73.3°]. 1H, 13C and 119Sn NMR and IR spectra of 2–4 and 9 were determined in CDCl3 solution: the NMR spectra of (MeO2CCH2CH2)2SnX2 show the following trends: (i) both δ1H and δ13C, increase and (ii) both 2J (Sn---H) and 1J(Sn---C) decrease in the sequence X2 = (NCS)2, Cl2, ClBr, Br2 and I2. The MeO2CCH2CH2 and dmio groups (dmio = 1,3-dithiole-2-one-4,5-dithiolato) are all chelating groups in (MeO2CCH2CH2)2Sn(dmio) (5). As shown by X-ray crystallography, the tin atom in the anion of solid [Q][MeO2CCH2CH2Sn(dmio)2] 6 (Q = NEt4) forms 5 strong bonds [to C and the 4 thiolato S atoms, Sn---S 2.459(2) to 2.559(2) Å], arranged in a near trigonal bipyramidal array. There is an additional Intramolecular but weaker, interaction with the carbonyl oxygen atom [Sn---O = 3.111(5) Å]; v(C=O) = 1714 cm−1 in solid 6 (Q = NEt4). NMR spectra of 5 and 6 are also reported.  相似文献   

5.
The methylene-bridged, mixed-chalogen compounds Fe2(CO)6(μ-SeCH2Te) (1) and Fe2(CO)6(μ-SCH2Te) (3) have been synthesised from the room temperature reaction of diazomethane with Fe2(CO)6(μ-SeTe) and Fe2(CO)6(μ-STe), respectively. Compounds 1 and 3 have been characterised by IR, 1H, 13C, 77Se and 125Te NMR spectroscopy. The structure of 1 has been elucidated by X-ray crystallography. The crystalsare monoclinic,space group P21/n, A = 6.695(2), B = 13.993(5), C = 14.007(4)Å, β = 103.03(2)°, V = 1278(7) Å3, Z = 4, Dc = 2.599 g cm−3 and R = 0.030 (Rw = 0.047).  相似文献   

6.
Toluene solutions of M2(NMe2)6 (M = Mo, W) react with mesitylene selenol (Ar′SeH) to give M2(SeAr′) 6 complexes. MO2(OR)6 (R = tBu, CH2tBu) react with excess> 6 fold) Ar′SeH to give Mo2 (SeAr′)6, whilst W2(OR)6(py)2 (R = iPr, CH2tBu) react with excess (> 6 fold) Ar′SeH to give W2(OR)2(SeAr′)4. Reaction of MO2(OPri)6 with Ar′SeH produces Mo2(OPri)2 (SeAr′)4 which crystallizes in two different space groups. These areneselenato complexes are air-stable and insoluble in common organic solvents. X-ray crystallographic studies revealed that the Mo2(SeAr′)6 and W2(SeAr′)6 compounds are isostructural in the solid state and adopt ethane-like staggered configurations with the following important structural parameters, M---M (W---W/Mo---Mo) 2.3000(11)/2.2175(13) Å, M---Se 2.430 (av.)/2.440 (av.) Å, M---M---SE 97.0° (av.)°. In the solid state W2(OiPr)2(SeAr′)4 adopts the anti-configuration with crystallographically imposed Ci symmetry and W---W 2.3077(7) Å, W---Se 2.435 (av.) Å, W---O 1.858(6) Å; W---W---SE 100.27(3)°, 93.8(3)° and W---W---O 108.41(17)°. Mo2(OPri)2(SeAr′) 4 crystallizes in both P and A2/a space groups in which the molecules are isostructural with each other and the tungsten analogue. Important bond lengths and angles are Mo---Mo 2.180(24) Å, Mo---Se 2.432(av.) Å, Mo---O 1.872(9) Å, Mo---Mo---Se 99.39(9)°, 94.71(8)°, Mo---Mo---O 107.55(28)°.  相似文献   

7.
The direct reaction between [TiCl4(THF)2] and SnCl2 in tetrahydrofuran (THF) yields the green paramagnetic salt [trans-TiCl2(THF)4][SnCl5(THF)]. The same compound is also formed in the reaction between [TiCl3(THF)3] and SnCl4 in THF. Crystals of the title compound are monoclinic with a = 8.442(4), b = 21.589(9), c = 9.262(5) Å, β = 107.91(5)°, Z = 2, space group P21/m. Both metal ions are in an octahedral environment. The titanium atom in the cation [TiCl2(THF)4]+ lies on the symmetry centre. The tin atom in [SnCl5(THF)] is located on the mirror plane.  相似文献   

8.
[Mo2(OAc)4] reacts with three or more equivalents of lithium chloride and PMe3 in thf to give [Mo2Cl3(μ-OAc)(PMe3)3]0.75thf (1). The IR spectrum of the complex shows Mo---O and Mo---Cl stretches at 350 and 300 cm−1 respectively and the 1H and 13C NMR spectra suggest several species are present in solution. [Mo2Cl3(μ-OAc)(PMe3)3] converts slowly in thf to [Mo2Cl4(PMe3)4] and [Mo2(OAc)4]. The structure of [Mo2Cl3(μ-OAc) (PMe3)3]0.5C6H5Me (2) has been determined by single-crystal X-ray diffraction methods. Crystals of the toluene solvate are tetragonal with a = 20.726(2), c = 11.776(2) Å, space GROUP = I4cm. The structure was solved by Patterson and Fourier methods and refined to R of 0.035 for the 539 observed data. The molecule contains two metal centres each of which shows 5-fold coordination. The two molybdenum atoms are linked by an acetate bridge and a short Mo---Mo bond of 2.121(3) Å. Remaining coordination sites are occupied on Mo(1) by two Cl and one PMe3 and on Mo(2) by one Cl and two PMe3 groups.  相似文献   

9.
The complex Fe(η6-C5H5CMe3)2 crystallizes in the centrosymmetric triclinic space group P (Ci1; No. 2) with unit cell dimensions of a 8.770(1) Å, b 8.878(1) Å, c 11.991(1) Å, 107.56(1)°, β 90.85(1)°, γ 90.13(1)°, V 890.0(2) Å3 and Z = 2. A full sphere of data was collected on a four-circle diffractometer. The structure was solved and refined to R 7.93% for all 3155 independent reflections and R 4.98% for those 2002 data with | F0 | > 6σ. | F0 |. The molecules lie on crystallographic inversion centers at 0, 0, 0 and 1/2, 0, 1/2; the crystallographic asymmetric unit therefore consists of two independent half molecules. The molecule centered at 0, 0, 0 (molecule “A”) is ordered and well-defined; that centered on 1/2, 0, 1/2 (molecule “B”)is probably disordered, as indicated by larger “thermal parameters” and a greater range of apparent interatomic distances. Discussion em phasizes the geometry of molecule A, which has precise Ci symmetry with Fe(1A)-B(1A) 2.297(4) Å and Fe(1A)-C(ring) distances ranging from 2.057(6) Å to 2.138(4) Å.  相似文献   

10.
Structures of non metal-metal bonded phosphido-bridged heterobimetallic complexes, including CpFe(CO)2(μ-PPh2)W(CO)5 (1-W) and metal-metal bonded CpFe(CO)(μ-CO)(μ-PPh2)W(CO)4 (2), were determined by a single crystal X-ray diffraction study. In 1-W, the long distance between Fe and W indicates no metal-metal bond to exist. In 2, a Fe---W bond with bond length 2.851 Å and a semibridging carbonyl with W---C---O angle 153° were observed. Mössbauer spectra of 1-W and 2 were taken at 77 K. Isomer shifts of 1-W and 2 were − 0.0203 mm s−1 and 0. 1917 mm s−1 respectively.  相似文献   

11.
The singlet-triplet separations for the edge-sharing bioctahedral (ESBO) complex W2(μ-H)(μ-Cl)(Cl4(μ-dppm)2 · (THF)3 (II) has been studied by 31P NMR spectroscopy. The structural characterization of [W2(μ-H)2(μ-O2CC6H5)2Cl2(P(C6H5)3)2] (I) by single-crystal X-ray crystallography has allowed the comparison of the energy of the HOMOLUMO separation determined using the Fenske-Hall method for a series of ESBO complexes with two hydride bridging atoms, two chloride bridging atoms and the mixed case with a chloride and hydride bridging atom. The complex representing the mixed case, [W2(μ-H)(μ-Cl)Cl4(μ-dppm)2 · (THF)3] (II), has been synthesized and the value of −2J determined from variable-temperature 31P NMR spectroscopy.  相似文献   

12.
The XeOSeF5+ cation has been synthesized for the first time and characterized in solution by 19F, 77Se and 129Xe NMR spectroscopy and in the solid state by X-ray crystallography and Raman spectroscopy with AsF6 as its counter anion. The X-ray crystal structures of the tellurium analogue and of the Xe(OChF5)2 derivatives have also been determined: [XeOChF5][AsF6] crystallize in tetragonal systems, P4/n, a=6.1356(1) Å, c=13.8232(2) Å, V=520.383(14) Å3, Z=2 and R1=0.0453 at −60°C (Te) and a=6.1195(7) Å, c=13.0315(2) Å, V=488.01(8) Å3, Z=2 and R1=0.0730 at −113°C (Se); Xe(OTeF5)2 crystallizes in a monoclinic system, P21/c, a=10.289(2) Å, b=9.605(2) Å, c=10.478(2) Å, β=106.599(4)°, V=992.3(3) Å3, Z=4 and R1=0.0680 at −127°C; Xe(OSeF5)2 crystallizes in a triclinic system, , a=8.3859(6) Å, c=12.0355(13) Å, V=732.98(11) Å3, Z=3 and R1=0.0504 at −45°C. The energy minimized geometries and vibrational frequencies of the XeOChF5+ cations and Xe(OChF5)2 were calculated using density functional theory, allowing for definitive assignments of their experimental vibrational spectra.  相似文献   

13.
The compound [RU332- -ampy)(μ3η12-PhC=CHPh)(CO)6(PPh3)2] (1) (ampy = 2-amino-6-methylpyridinate) has been prepared by reaction of [RU3(η-H)(μ32- ampy) (μ,η12-PhC=CHPh)(CO)7(PPh3)] with triphenylphosphine at room temperature. However, the reaction of [RU3(μ-H)(μ3, η2 -ampy)(CO)7(PPh3)2] with diphenylacetylene requires a higher temperature (110°C) and does not give complex 1 but the phenyl derivative [RU332-ampy)(μ,η 12 -PhC=CHPh)(μ,-PPh2)(Ph)(CO)5(PPh3)] (2). The thermolysis of complex 1 (110°C) also gives complex 2 quantitatively. Both 1 and 2 have been characterized by0 X-ray diffraction methods. Complex 1 is a catalyst precursor for the homogeneous hydrogenation of diphenylacetylene to a mixture of cis- and trans -stilbene under mild conditions (80°C, 1 atm. of H2), although progressive deactivation of the catalytic species is observed. The dihydride [RU3(μ-H)232-ampy)(μ,η12- PhC=CHPh)(CO)5(PPh3)2] (3), which has been characterized spectroscopically, is an intermediate in the catalytic hydrogenation reaction.  相似文献   

14.
Two novel hydrogen maleato (HL) bridged Cu(II) complexes 1[Cu(phen)Cl(HL)2/2] 1 and 1[Cu(phen)(NO3)(HL)2/2] 2 were obtained from reactions of 1,10-phenanthroline, maleic acid with CuCl2·2H2O and Cu(NO3)2·3H2O, respectively, in CH3OH/H2O (1:1 v/v) at pH=2.0 and the crystal structures were determined by single crystal X-ray diffraction methods. Both complexes crystallize isostructurally in the monoclinic space group P21/n with cell dimensions: 1 a=8.639(2) Å, b=15.614(3) Å, c=11.326(2) Å, β=94.67(3)°, Z=4, Dcalc=1.720 g/cm3 and 2 a=8.544(1) Å, b=15.517(2) Å, c=12.160(1) Å, β=90.84(8)°, Z=4, Dcalc=1.734 g/cm3. In both complexes, the square pyramidally coordinated Cu atoms are bridged by hydrogen maleato ligands into 1D chains with the coordinating phen ligands parallel on one side. Interdigitation of the chelating phen ligands of two neighbouring chains via π–π stacking interactions forms supramolecular double chains, which are then arranged in the crystal structures according to pseudo 1D close packing patterns. Both complexes exhibit similar paramagnetic behavior obeying Curie–Weiss laws χm(T−θ)=0.414 cm3 mol−1 K with the Weiss constants θ=−1.45, −1.0 K for 1 and 2, respectively.  相似文献   

15.
Irena Szczygiel   《Thermochimica Acta》2001,370(1-2):125-128
The phase diagram of the system CePO4–K3PO4 has been determined based on investigations by differential thermal analysis, X-ray powder diffraction, IR spectroscopy and optical microscopy. The system contains only one intermediate compound K3Ce(PO4)2, which melts incongruently at (1500±20)°C. This compound is stable down to room temperature and exhibits a polymorphic transition at 1180°C. It was confirmed that the low-temperature form β-K3Ce(PO4)2 crystallizes in a monoclinic system, space group P21/m with unit cell parameters a=9.579 (5), b=5.634 (6), c=7.468 (5) Å; =γ=90°, β=90.81 (3)°; V=403.083 Å3.  相似文献   

16.
The complex (μ-H)5Os3Re(CO)12 crystallizes in the centrosymmetric hexagonal space group P63/m (C26h; No. 176) with a 19.087(5), c 10.963(1) Å, V 3459(3) Å3, and Z = 6. Diffraction data were collected on a Syntex P21 automated four-circle diffractometer (Mo-K radiation, 2θ = 4.5–45.0°) and the structure was refined to RF = 7.9% for all 1480 unique reflections (RF = 5.4% for those 1007 data with ¦Fo¦ > 6σ(¦Fo¦)). The molecule contains a tetrahedral core of metal atoms each associated with three terminal carbonyl ligands. It is bisected by a crystallographic mirror plane. Although the hydride ligands were not located, a consideration of metal-metal distances allows the distinction between osmium and rhenium atoms and suggests that the structure is subject to a subtle form of two-fold disorder.  相似文献   

17.
The adducts of O2 and SO2 with trans-MeOIr(CO)(PPh3)2 are formed in equilibria and have been characterized. Reaction of the SO2 adduct, Ir(OMe)(SO2)(CO)(PPh3)2 with dioxygen leads to the sulfato complex, Ir(Ome)(CO)(PPh3)2(SO4), the structure of which has been determined. Ir(Ome)(CO)(PPh3)2(SO4) crystallizes in the monoclinic system with a 11.958(2), b 14.163(3), c 12.231(2) Å, β 118.365(12)°, V 1822.7(6) Å3 and Z = 2. Diffraction data for 2θ = 4.5–45.0° (Mo-K) were collected with a Syntex P21 diffractometer and the structure was solved (assuming space group P21/m and an unpleasant 2-fold disordered model) and refined to R = 4.8% for all 2512 independent data (R = 3.5% for those 2042 data with ¦FO¦ > 6σ(¦F¦)). The iridium(III) atom has a distorted octahedral coordination sphere with trans PPh3 ligands and a cis-chelating bidentate O,O′-SO4 group; the structure is completed by mutually cis OMe and CO ligands.  相似文献   

18.
Reaction of the optically active primary amine (S)-(—)--methylbenzylamine with trimethylaluminium in heptane affords the crystalline organoaluminium dimer (S)-(—)-(S)-(—)-[(C6H5)CH(CH3)NHA1(CH3)2]2. Isolated as large, colourless, extremely air-sensitive prismatic crystals, the title compound crystallizes in the orthorhombic space group P212121 with unit cell parameters a = 8.406(3), b = 15.505(4), c = 17.547(5) Å, V = 2287 Å3 and p = 1.03 g cm−3 for Z = 4. Least-squares refinement based on 1477 observed reflections converged at R = 0.056, Rw = 0.058. Methane was eliminated during the course of the reaction due to cleavage of A1---C and N---H bonds resulting in an asymmetric A12N2 fragment at the core of the organoaluminium dimer. The mean A1---C bond distance in the dimethylaluminium units is 1.930(8), while the mean A1---N bond distance is 1.950(5) Å. Specific rotation ([]D25 in CH2C12)of the dimer is determined to be - 20.6°.  相似文献   

19.
Peter C. Junk  Jonathan W. Steed   《Polyhedron》1999,18(27):4646-3597
[Co(η2-CO3)(NH3)4](NO3)·0.5H2O and [(NH3)3Co(μ-OH)2(μ-CO3)Co(NH3)3][NO3]2·H2O were prepared by prolonged aerial oxidation of a solution of Co(NO3)2·6H2O and ammonium carbonate in aqueous ammonia. The formation of these side products highlights the richness of the chemistry of these systems and the possibility of by products if methods are not strictly adhered to. The X-ray crystal structures of [Co(η2-CO3)(NH3)4][NO3]·0.5H2O and [(NH3)3Co(μ-OH)2(μ-CO3)Co(NH3)3][NO3]2·H2O reveal a monomeric octahedral cobalt center with η2-bound CO32− in the former, while the latter consists of a dimeric array where the two cobalt centers are bridged by two OH and one μ2-CO32− groups with three terminal NH3 ligands for each Co center. In both complexes extensive hydrogen bonding interactions are evident.  相似文献   

20.
The crystal structures of propionaldehyde complex (RS,SR)-(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH3)]+ PF6 (1b+ PF6s−; monoclinic, P21/c (No. 14), a = 10.166 (1) Å, b = 18.316(1) Å, c = 14.872(2) Å, β = 100.51(1)°, Z = 4) and butyraldehyde complex (RS,SR)-[(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH2CH3)]+ PF6 (1c+PF6; monoclinic, P21/a (No. 14), a = 14.851(1) Å, b = 18.623(3) Å, c = 10.026(2) Å, β = 102.95(1)°, Z = 4) have been determined at 22°C and −125°C, respectively. These exhibit C O bond lengths (1.35(1), 1.338(5) Å) that are intermediate between those of propionaldehyde (1.209(4) Å) and 1-propanol (1.41 Å). Other geometric features are analyzed. Reaction of [(η5-C5H5)Re(NO)(PPh3)(ClCH2Cl)]+ BF4 and pivalaldehyde gives [(η5-C5H5)Re(NO)(PPh3)(η2-O=CHC(CH3)3)]+BF4 (81%), the spectroscopic properties of which establish a π C O binding mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号