首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this paper, a composite of reduced graphene oxide decorated by Co3O4 hollow spheres (Co3O4/RGO composite) has been synthesized by a one-pot solvothermal method. The samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR), Raman spectra and so on. The results demonstrate that the Co3O4 hollow spheres with good purity and homogenous size are absorbed onto the reduced graphene oxide sheets as spacers to prevent the aggregation of the graphene oxide sheets. Furthermore, the well electrochemical properties demonstrate that the Co3O4/RGO composite might have potential applications as electrode materials for supercapacitors.  相似文献   

2.
We described a method for synthesizing hollow silica/magnetic composite spheres using sulfonic acid functionalized hollow silica spheres (SAFHSS) as templates. The Fe3O4 nanoparticles were deposited on or imbedded in the hollow silica shell by a precipitation reaction. The morphologies, composition and properties of the hollow composite spheres were characterized by transmission electron microscopy, Fourier transform infrared analysis, X-ray diffraction measurement and vibrating-sample magnetometry measurement. The results indicated crystal sizes and amount of the Fe3O4 nanoparticles on the SAFHSS. The magnetic properties of the hollow composite spheres were controlled by adjusting the proportion between Fe2+ and Fe3+ and iron ion total concentration. When appropriate loading species were added into the system, superparamagnetite hollow composite spheres were obtained. The method also could be applicable to prepare other superparamagnetite hollow silica/ferrite composite spheres.  相似文献   

3.
ZnO nanostructures including nanorods, dense, and partially hollow spheres were synthesized via a solution synthesis method with temperature ranging from 65 to 95 °C. Scanning electron microscopy (SEM) revealed that the diameter of the spheres is in the range of 200–500 nm. Transmission electron microscopy (TEM) showed that some of the spheres are hollow or partially hollow. Powder X-ray Diffraction (XRD) and TEM-Selected area electron diffraction (SAED) analysis showed that the spheres consist of polycrystalline nanoparticles. It was found for the first time that the agitation during the synthesis plays a critical role on morphology of the ZnO nanostructures formed in solution. The oriented attachment of nanocrystals without agitation during the synthesis could guide the nanocrystals to form an ordered nanorod structure. However, the disordered aggregation of the nanocrystals under shear force resulted in a spherical morphology. It was also found that the composition of spheres is different from that of nanorods: the spheres consist of both ZnO and Zn(OH)2, but nanorods consist of single-crystal ZnO only. Zn(OH)2 presented in the spheres could decompose to ZnO by calcination, resulting in the formation of hollow spheres.  相似文献   

4.
Hollow ZnV2O4 spheres with the shell aggregated by small nanoparticles were successfully synthesized through a facile one-pot template-free solvothermal method. The as-prepared product was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and Brunauer-Emmett-Teller N2 adsorption-desorption analyses. The formation of ZnV2O4 hollow spheres was based on flowerlike intermediate products supported reduction-dissolution-aggregation process at the expense of consumption of all the flowerlike products. The obtained ZnV2O4 hollow spheres showed a good adsorption capacity of methylene blue (MB) organic dye, which might be attributed to their special structural feature with large surface area. The adsorption kinetics and isotherm of MB on ZnV2O4 hollow spheres were also studied.  相似文献   

5.
Three-dimensional (3D) architecture of TiO2 hollow sphere has many excellent and interesting performances that attract significant attention nowadays. In this paper, a simple surface erosion approach to the fabrication of TiO2 hollow spheres via the hydrothermal process has been developed. The morphologies and the phase were characterized by scanning electron microscopy (SEM) and X-ray diffractometer (XRD). The results indicate that the anatase-type TiO2 hollow spheres with a diameter of ∼1 μm are successfully synthesized. The shell thickness of TiO2 hollow spheres is ∼150 nm and the size of hollow cavity is ∼600 nm. By the control experiments, the influence of ammonium fluoride and hydrogen peroxide on the hollow spherical structures was studied. Hydrogen peroxide acts as both the oxidant and the bubble generator, ammonium fluoride is crucial for the erosion and dissolution of titanium, the detailed dissolution-crystallization mechanism for the formation of TiO2 hollow spheres was also proposed.  相似文献   

6.
Boron nitride hollow spheres were synthesized by the reaction of BBr3 and NaNH2 at room temperature; X-ray powder diffraction pattern could be indexed as hexagonal BN with the lattice constants of a=2.482 and c=6.701 Å; high-resolution transmission electron microscopy image showed the hollow spheres consisted of BN nanoparticles, with diameter between 80 and 300 nm; a possible formation mechanism of BN hollow spheres was discussed.  相似文献   

7.
Cu2O polyhedral particles and hollow spheres were successfully synthesized by adjusting the concentration of triethanolamine (TEOA). The as-prepared samples were structurally characterized by the scanning electron microscope (SEM), X-ray powder diffraction (XRD), and transmission electron microscopy (TEM). The results revealed that the solid polyhedral Cu2O with sizes ranging from 70 to 150 nm was in good crystallization. The diameter of the hollow Cu2O spheres increased to 350–450 nm. It was found that the sizes and morphologies of the products could be significantly affected by the concentration of TEOA. And the morphology of Cu2O transformed from solid polyhedrons to hollow spheres with the further enrichment of TEOA concentration. A possible mechanism was proposed to explain the formation of the hollow Cu2O spheres. In addition, we investigated the antibacterial activities of the samples. It was demonstrated that the hollow Cu2O sphere exhibited better antibacterial activities for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) compared with the solid polyhedral Cu2O.  相似文献   

8.
TiO2 hollow nanospheres were prepared using silicon oxide as a template. N-doped titanium oxide hollow spheres, TiO2−xNx were synthesized by reacting TiO2 hollow spheres with thiourea at 500 °C. XRD and XPS data showed that oxygen was successfully substituted by nitrogen through the nitrogen-doping reaction, and finally N-doped TiO2 hollow spheres were formed. The N-doped TiO2 hollow spheres showed new absorption shoulder in visible light region so that they were expected to exhibit photocatalytic activity in the visible light. The photocatalytic activity of N-doped TiO2 hollow spheres under visible light was similar to that of normal spherical TiO2−xNx in spite of the structural difference.  相似文献   

9.
Core–shell multifunctional composite spheres consisting of Fe3O4–polyaniline (PANi) shell and polystyrene (PS) core were fabricated using core–shell-structured sulfonated PS spheres (with uniform diameter of 250 nm) as templates. PANi was doped in situ by sulfonic acid resulting the composite spheres are well conductive. Dissolved with solvent, PS cores were removed from the core–shell composite spheres and hollow Fe3O4–PANi spheres were obtained. Removing the PANi and PS components by calcinations produced hollow Fe3O4 spheres. The cavity size of the hollow spheres was uniformly approximate to 190 nm and the shell thickness was 30 nm. The cavity size and the shell thickness can be synchronously controlled by varying the sulfonation time of the PS templates. The shell thickness in size range was of 20–86 nm when the sulfonation time was changed from 1 to 4 h. These resulting spheres could be arranged in order by self-assembly of the templates. Both the Fe3O4–PANi/PS composite spheres and the hollow Fe3O4 spheres exhibit a super-paramagnetic behavior. Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray powder scattering were used to characterize these as-prepared spheres. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Porous hollow silica spheres were prepared by using polystyrene-methyl acrylic acid latex as a template and cetyltrimethylammonium bromide as a wall structure-directing agent starting from tetraethoxysilane. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-infrared spectroscopy (FT-IR) and nitrogen adsorption/desorption were used to characterize the hollow silica spheres. When silica-coated latex composites were prepared at room temperature, hollow silica spheres with micropores in the walls were formed after removing the latex templates by calcination. When silica-coated latex composites were aged at a higher temperature of 150 °C, intact mesoporous hollow silica spheres were formed after calcination treatment.  相似文献   

11.
Hollow ZnO microspheres assembled by nanoparticles have been prepared by a sonochemical synthesis at room temperature using carbon spheres as template. The growth process of the precursor was investigated. The prepared hollow spheres were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM). The diameter of the obtained hollow spheres is about 500 nm, and the walls are composed of numerous ZnO aggregate nanocrystallines with diameters of 90 nm. A possible growth mechanism for the formation of ZnO microspheres has been proposed, in which carbon spheres play a crucial role in the formation of the wurtzite hollow ZnO microspheres. The specific structure of the hollow spheres may find applications in nanoelectronics, nanophotonics and nanomedicine.  相似文献   

12.
In this work we report the preparation of magnetic hematite hollow sub-micron spheres (??-Fe2O3) by colloidal suspensions of ferric nitrate nine-hydrate (Fe(NO3)3·9H2O) particles in citric acid solution by following the sol?Cgel method. After the gel formation, the samples were annealed at different temperatures in an oxidizing atmosphere. Annealing at 180°C resulted in an amorphous phase, without iron oxide formation. Annealing at 250°C resulted in coexisting phases of hematite, maghemite and magnetite, whereas at 400°C, only hematite and maghemite were found. Pure hematite hollow sub-micron spheres with porous shells were formed after annealing at 600°C. The characterization was performed by X-ray diffraction (XRD), Mössbauer spectroscopy (MS) and scanning electron microscopy (SEM).  相似文献   

13.
Cuprous oxide hollow spheres have potential applications in drug-delivery carriers, biomedical diagnosis agents, and cell imaging. From a commercial point of view, the low-temperature, template-free, facile method is widely popular synthetic method for the synthesis of cuprous oxide hollow spheres. In this letter, we describe a novel facile template-free wet-chemical route to prepare crystallized cuprous oxide microspheres at room temperature. XRD patterns and SEM images revealed that pure crystallized cuprous oxide hollow microspheres were successfully obtained at room temperature. The diameter of cuprous oxide hollow sphere can be adjusted (0.7-7 μm) by concentration control of hydrazine hydrate. Generated N2 gas bubbles in the aqueous solution, serving as “soft” templates, play a key role in the formation of hollow microspheres.  相似文献   

14.
Metal oxide semiconductors with hollow structure and morphology have attracted considerable attentions because of their promising application on gas sensors. In this paper, LaFeO3 hollow nanospheres have been prepared by using carbon spheres as templates in combination with calcination. Based on the observation of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and transmission electron microscope (TEM), the structure and morphology of the products were characterized. It has been revealed that as-prepared LaFeO3 samples have a uniform diameter of around 300 nm and hollow structures with thin shells of about 30 nm consisting of numerous nanocrystals and nanopores. Owing to the hollow and porous structure, large surface area and more surface active sites, the sensor based on LaFeO3 hollow nanospheres exhibited high response, good selectivity and stability to formaldehyde gas (HCHO). It suggests that the as-prepared LaFeO3 hollow nanospheres are promising candidates for good performance formaldehyde sensor.  相似文献   

15.
《Current Applied Physics》2014,14(2):187-191
Nanostructured manganese oxide was produced by potentiostatic and cyclic voltammetric deposition techniques from aqueous KMnO4 solutions. Scanning electron microscopy (SEM) and X-ray diffraction were used to study the morphology and crystal structure of the deposited films. The electrochemical properties of deposited films, that obtained by two techniques, were investigated via performing the cyclic voltammetric tests. The results showed the higher specific capacitances of the nanostructured manganese oxide electrodes which have been produced via cyclic voltammetric deposition. The good retention was obtained for all synthesized electrode materials.  相似文献   

16.
Lithium manganese oxide powders have been successfully prepared by a molten salt synthesis using eutectic mixture of LiCl and MnO2 salt at 900 °C. The synthesis was performed in open atmosphere. The crystalline powders were characterized for their phase identification using X-ray diffraction analysis. The physicochemical properties of the lithium manganese oxide powders are investigated by thermal analysis (thermo gravimetric analysis/ differential thermal analysis), Fourier transform infrared spectroscopy, Raman spectroscopy, atomic absorption spectroscopy, electron spin resonance spectroscopy, and scanning electron microscopy. This work shows the feasibility for obtaining lithium manganese oxide at low-temperature molten salt flux method.  相似文献   

17.
采用射频等离子体增强化学气相沉积技术,在CH4/H2的气氛中合成了非晶空心碳球.利用SEM,TEM,拉曼光谱对样品的形貌、成分和结构进行了表征.非晶空心碳球的直径在100~800nm之间,分布在弯曲的碳纳米管丛中.非晶空心碳球的生长机制可能为膨胀生长.  相似文献   

18.
In this work, we report a simple liquid reduction approach to prepare Cu2O hollow microsphere film and hollow nanosphere powder with Cu(OH)2 nanorods as precursor and ascorbic acid as the reductant at 60 °C. When Cu(OH)2 nanorod array film grown on a copper foil is used as the precursor, Cu2O thin film made up of hollow microspheres with average diameter of 1.2 μm is successfully prepared. When the Cu(OH)2 nanorods are scraped from the copper foil and then used as the precursor, Cu2O hollow nanosphere powder with the average diameter of 270 nm is obtained. The samples are characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and ultraviolet-vis light (UV-vis) absorption spectra. A possible formation mechanism of Cu2O hollow spheres is discussed.  相似文献   

19.
A novel method of synthesizing Ti3+-doped TiO2 was proposed. Ti3+-doped TiO2 hollow spheres were prepared with different thickness of carbon shell by using atmospheric pressure plasma jet generated by dual-frequency power sources. The as-synthesized Ti3+-doped TiO2 hollow microspheres were characterized by X-ray diffraction (XRD) pattern, scanning electron microscope (SEM) images, high-resolution transmission electron microscopy (HRTEM) images, Raman spectra, X-ray photoelectron spectroscopy (XPS), and UV–vis spectra. These results indicated that these samples had mixed phases of anatase and rutile and the structure of hollow sphere varied with different thickness of carbon shell. The Ti-O-C chemical bond was the connection between the TiO2 hollow sphere and carbon layer. Amount of Ti3+ ions were found, which were accompanied with the formation of oxygen vacancies. Meantime, the as-synthesized catalysts also display strong absorption in the visible light region and have a narrow band energy gap. Optical emission spectroscopy (OES) was used to observe different excited species in the discharge area. These results showed that the oxygen content had a significant impact on the number of oxygen vacancies. Finally, the photocatalytic activities of as-prepared samples were evaluated by decomposition of rhodamine B aqueous solution, which showed better photocatalytic activity under UV–vis light irradiation.  相似文献   

20.
Hollow ferrite spheres of 220-340 nm diameter were synthesized at 60 °C as multi-functionalized magnetic carriers which are potentially applicable both as drug delivery systems (DDS) and hyperthermia treatment. We found that SH and OH groups on the silica template spheres enabled the fabrication of continuous ferrite shells of 20-30 nm in thickness. Transmission electron microscopy and energy-dispersive spectroscopy revealed that the templates were dissolved by a NaOH solution, yielding hollow particles exhibiting saturation magnetization of 78 emu/g. The results suggested that the ferrite shells are porous and the pores work as pathway for releasing drugs from the hollow particle inside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号