首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
JingJing Xu  Yuan Tian  Litong Jin 《Talanta》2010,82(4):1511-1515
A highly soluble poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid)/Au (PEDOT-PSS/Au) nanocomposite was prepared via one-step chemical synthesis and the matrix was characterized by UV-vis spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and transmission electron microscope (TEM). Due to the excellent aqueous compatibility and biocompatibility, the PEDOT/PSS-Au nanocomposite can be used as biomaterial for enzymes immobilization. In this system, redox enzyme, horseradish peroxidase (HRP) was integrated with PEDOT/PSS-Au nanocomposite and the direct electron transfer of HRP was observed. Moreover, we find that the HRP/PEDOT-PSS/Au modified electrode shows excellent electrocatalytic ability for H2O2 and the formal Michaelis-Menten constant was 0.78 mmol/L. The response currents have good linear relation with the concentrations of H2O2 with a linear range from 2.0 × 10−7 to 3.8 × 10−4 mol/L.  相似文献   

3.
4.
The ionic liquid, as a green solvent, has several advantages over the organic solvents in traditional liquid-liquid extraction. Aqueous two-phase system (ATPS) consisting of a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoraborate, [Bmim]BF4) and Na2CO3, which is a novel, simple, non-toxic and effective sample pretreatment technique coupled with molecular fluorescence spectrophotometry, was developed for the simultaneous separation, enrichment and rapid analysis of roxithromycin. The extraction yield of roxithromycin in [Bmim]BF4-Na2CO3 aqueous two-phase system is influenced by the types of salts, concentrations of Na2CO3 and [Bmim]BF4, as well as the extracting temperature. Under the optimum conditions, the average extraction efficiency is up to 90.7%. The mechanism of ionic liquid-salt ATPS formation was discussed by hydration theory, and the extraction mechanism of the [Bmim]BF4-salt ATPS was investigated by FT-IR spectroscopy and UV-vis spectroscopy. The results demonstrate that no chemical (bonding) interactions are observed between ionic liquid and roxithromycin, while the nature properties of the roxithromycin are not altered. This method was practical when applied to the analysis of roxithromycin in real water samples with the detection limit of 0.03 μg mL−1, relative standard deviation (RSD) of 1.9% (n = 13), and linear ranges of 1.00-20.00 μg mL−1. The proposed extraction technique will be promising in the separation of other small biomolecules.  相似文献   

5.
The aim of this study was to assess the feasibility of near infrared spectroscopy (NIRS) for analysis of acyclovir in plasma. This methodology was based on the direct measurement of the transmission spectra of liquid samples and a multivariate calibration model (partial least squares, PLS) to determine the acyclovir concentration in plasma sample. The PLS calibration set was built on using the spiked samples by mixing different amounts of acyclovir. Concentration of acyclovir in the plasma samples was calculated employing a 6-factors PLS calibration using the spectral information in the range of 6102-5450 cm− 1. The root mean square errors of prediction (RMSEP) found was 1.21 for acyclovir. The developed PLS-NIRS procedure allows the determination of 120 samples/h does not require any sample pretreatment and avoids waste generation.  相似文献   

6.
Predictions of grapevine yield and the management of sugar accumulation and secondary metabolite production during berry ripening may be improved by monitoring nitrogen and starch reserves in the perennial parts of the vine. The standard method for determining nitrogen concentration in plant tissue is by combustion analysis, while enzymatic hydrolysis followed by glucose quantification is commonly used for starch. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR–FT-IR) combined with chemometric modelling offers a rapid means for the determination of a range of analytes in powdered or ground samples. ATR–FT-IR offers significant advantages over combustion or enzymatic analysis of samples due to the simplicity of instrument operation, reproducibility and speed of data collection. In the present investigation, 1880 root and wood samples were collected from Shiraz, Semillon and Riesling vineyards in Australia and Germany. Nitrogen and starch concentrations were determined using standard analytical methods, and ATR–FT-IR spectra collected for each sample using a Bruker Alpha instrument. Samples were randomly assigned to either calibration or test data sets representing two thirds and one third of the samples respectively. Signal preprocessing included extended multiplicative scatter correction for water and carbon dioxide vapour, standard normal variate scaling with second derivative and variable selection prior to regression. Excellent predictive models for percent dry weight (DW) of nitrogen (range: 0.10–2.65% DW, median: 0.45% DW) and starch (range: 0.25–42.82% DW, median: 7.77% DW) using partial least squares (PLS) or support vector machine (SVM) analysis for linear and nonlinear regression respectively, were constructed and cross validated with low root mean square errors of prediction (RMSEP). Calibrations employing SVM-regression provided the optimum predictive models for nitrogen (R2 = 0.98 and RMSEP = 0.07% DW) compared to PLS regression (R2 = 0.97 and RMSEP = 0.08% DW). The best predictive models for starch was obtained using PLS regression (R2 = 0.95 and RSMEP = 1.43% DW) compared to SVR (R2 = 0.95; RMSEP = 1.56% DW). The RMSEP for both nitrogen and starch is below the reported seasonal flux for these analytes in Vitis vinifera. Nitrogen and starch concentrations in grapevine tissues can thus be accurately determined using ATR–FT-IR, providing a rapid method for monitoring vine reserve status under commercial grape production.  相似文献   

7.
Supercritical fluid extraction (SFE) with carbon dioxide as extraction medium was on-line coupled to a FT-IR spectrometer equipped with a Mercury Cadmium Telluride (MCT) detector using a tailor-made high-pressure fibre optic flow cell. This method was optimised and developed for the monitoring in real time and the quantification of dynamic extractions of tagitinin C from Tithonia diversifolia leaves.In order to demonstrate the method ability to allow the direct quantification of tagitinin C in the extract medium the standard addition method was used. The area integration of curves obtained by plotting the absorbance of the highly specific CO stretching vibration at 1668 cm−1 versus time (i.e. extractograms) was used as instrumental response.The SFE/FT-IR process was successfully validated using the accuracy profile as decision tool. On this basis, a linear regression model was chosen for the calibration curve. The relative standard deviation for repeatability and intermediate precision were between 0.8 and 3.1 %, respectively. Moreover, the method was found to be accurate as the two-sided 95% beta-expectation tolerance interval did not exceed the acceptance limits of 85 and 115% on the analytical range investigated (500-2500 μg of added amount of tagitinin C).The proposed method allowed the non-destructive extraction of tagitinin C and its on-line quantitative determination in less than 25 min thus facilitating the subsequent experiments or the pharmacological studies performed on this compound.  相似文献   

8.
A method for the determination of oleic acid in sunflower seeds is proposed. One hundred samples of sunflower seeds were analyzed by near-infrared diffuse reflectance spectroscopy (NIRDRS). The direct measures were realized in ground and sifted seeds. The PLS multivariate calibration model was obtained using first derivate absorbance values as response matrix, while the oleic acid concentration matrix was obtained analyzing the seed samples by gas chromatography with a flame ionization detector (GC-FID). The NIRDRS-PLS model was validated externally using unknown samples of sunflower seeds. The accuracy and precision of the method was evaluated using GC as reference method. The following figures of merit (FOM) were obtained: LOD = 3.4% (w/w); LOQ = 11.3% (w/w); SEN = 8 × 10−5; SEL = 0.15; analytical sensibility (γ) = 1.5 and linear range (LR) = 18.1-89.2% (w/w). This method is useful for the fast determination of oleic acid in sunflower seeds and for quality control of raw materials.  相似文献   

9.
A novel spectrofluorimetric method using vanillin-8-aminoquinoline (VAQ) as fluorescent probe was developed for the determination of superoxide anion radical (O2). The new fluorescent probe was characterized by elemental analysis and IR spectra. Under the optimum conditions of the determination, the linear calibration range and the detection limit of the developed method for superoxide anion radical were in the range (0.0-1.0)×10−5 and 2.0×10−8 mol l−1, respectively. The effect of interferences was studied. The proposed method was applied to determine the generation rate of superoxide anion radical in the course of aging in red sage successfully.  相似文献   

10.
The sampling efficiency of C18 solid-phase extraction cartridges was investigated for methylamine, ethylamine, propylamine, butylamine and pentylamine, in air. Determination of these analytes was based on derivatization with o-phthaldialdehyde-N-acetylcysteine (OPA-NAC) on the solid support and fluorescence detection at λexcitation=330 nm and λemission=440 nm of the eluted derivatives. The calibration model derived from aqueous standards was statistically comparable with the calibration model for air standards. Aqueous amines can be used as standards. The method was useful for calculating short-term exposure limits (STEL). A sampling time of 15 min at 30 ml min−1 was employed. Good recoveries for amines alone and their mixtures were obtained from air and water samples, 98±14 and 97±12% (mean ), respectively. Recovery values were independent of amine concentration. The detection limits varied between 0.16 and 0.52 μg per sample (0.35 and 1.18 mg m−3, respectively) and the calibration graphs were linear in the range 0.5-2 μg per sample except for pentylamine, which was 1.5-5 μg per sample. The utility of the method was demonstrated for the estimation of methylamine in two generated air samples.  相似文献   

11.
Tagitinin C, an antiplasmodial compound, identified as one major compound of the subtropical medicinal plant, Tithonia diversifolia, was determined by FT-IR spectroscopy method. The crude ether extracts from aerial parts of the plant were evaporated to dryness and re-dissolved in tetrachloroethylene (C2Cl4) before analysis.The magnitude of the absorbance of the very specific CO stretching vibration (νCO) at 1664.8 cm−1 was exploited in order to quantify tagitinin C. The determination coefficient (r2) of the calibration scale was 0.9994, the detection limit was lower than 3 μg ml−1 and the quantification limit was lower than 10 μg ml−1.Recovery values from 100.5 to 101.7% were found for spiked concentration levels from 19.91 to 89.95 μg ml−1. The main characteristics of the curves obtained from the calibration standards and from the standard addition technique were not statistically different (Student t-test) suggesting that matrix effects were negligible.The results obtained for the determination of tagitinin C in the crude ether extract from aerial parts of T. diversifolia by LC and FT-IR spectroscopic method agreed well: 0.76±0.02 and 0.773±0.009, of tagitinin C in dried plant respectively.  相似文献   

12.
13.
A method for on-line preconcentration of palladium at ultra-trace level on alumina microcolumns and determination by inductively coupled plasma mass spectrometry (ICP-MS) has been developed. A sampling time of 10 min (30 ml) and an eluent (KCN) volume of 300 μl provides a limit of detection of 1 ng l−1. The precision was 4% at the 25 ng l−1 level. The proposed system allows the on-line removal of the primary interferents (Cu and Y) providing the credible accuracy of the results. The proposed method is suitable for palladium determination in urban water samples. Platinum concentration in the analysed urban water samples was also determined.  相似文献   

14.
Santosh Kumar Verma 《Talanta》2007,71(4):1546-1552
The feasibility of employing diffuse reflectance Fourier transform infrared spectroscopy (DRS-FTIR) as a sensitive tool in the submicrogram level determination of sulphate (SO42−) was checked in this work. This paper presents the development of a new, rapid and precise analytical method for ppb levels of sulphate (SO42−) in environmental samples like coarse and fine aerosol particles, dry deposits and soil. The determination of submicrogram levels of sulphate is based on the selection of a quantitative analytical peak at 617 cm−1 among the three observed vibrational peaks and preparing calibration curve using different known concentrations of sulphate by diffuse reflectance-Fourier transform infra red spectrometric (DRS-FTIR) technique. Pre-weighed and ground IR grade KBr was used as substrate over which remarkably wide range of known concentration of sulphate was sprayed and dried. The dried sample was analysed by DRS-FTIR. Three calibration curves for three different concentration ranges of sulphate were prepared for samples containing low and relatively higher sulphate contents. The relative standard deviation (n = 8) for the sulphate concentration ranges, 2.5-35.5, 25.5-165, 55-1000 μg/0.5 g KBr, as used to prepare calibration curves, were 2.4%, 2.1% and 1.5%, respectively. The relative standard deviation for the sulphate concentration in real samples were found to be in the range, 3.11-5.76% (n = 16), 4.05-7.75% (n = 16) and 1.48-3.52% (n = 10) for aerosol, dry deposits and soil, respectively. The LOD of the method is 0.20 μg/g SO42−. The F- and t-tests were performed to check the analytical quality assurance test. The noteworthy feature of the reported method is the non-interference of any of the associated anions and cations. The results were compared with that of ion-chromatographic method with high degree of acceptability. The method can be applied in wide concentration ranges. A method for sulphate determination was introduced that did not require pretreatment of samples. This method employed the direct determination of the sulphate. The method is reagent less, nondestructive, very fast, repeatable, and accurate and has high sample throughput value.  相似文献   

15.
Inductively coupled plasma mass spectrometry (ICP-MS) with a time-of-flight (TOF) analyser was used for the determination of chromium, cadmium and lead in six food-packaging materials (paper and paper board). The samples (0.20-0.25 g) were digested in concentrated nitric acid in a high pressure microwave oven at 180 °C within 15 min. Two different plasma conditions were applied: cool plasma conditions (0.76 kW; 0.85, 0.89 and 15.5 l min−1 nebuliser, auxiliary and plasma gas flow rate, respectively) for the determination of chromium and normal plasma conditions (1.21 kW; 0.66, 0.68 and 13.6 l min−1 nebuliser, auxiliary and plasma gas flow rate, respectively) for the determination of cadmium and lead. External calibration was used in combination with rhodium (40 ng g−1) as an internal standard. The detection limits (DL = 3S.D./sensitivity) under the conditions used corresponded to 0.01 ng g−1 (), 0.06 ng g−1 (), 0.07 ng g−1 (), 0.03 ng g−1 () and 0.02 ng g−1 ( and ). The precision (R.S.D.) for six replicate determinations (10 s integration time) of 1 and 10 ng g−1 of each analyte varied from 0.72% () to 4.43% (). The contents of chromium, cadmium and lead in the examined materials were evaluated using the signals of , and . They were in the range: 0.25-0.50 μg g−1 for Cr, not detected (nd) to 0.12 μg g−1 for Cd and 0.28-0.35 μg g−1 for Pb in paper and 0.50-0.64 μg g−1 for Cr, nd to 0.09 μg g−1 for Cd and 0.67-0.99 μg g−1 for Pb in paper board.  相似文献   

16.
A novel flow injection analysis (FIA) system based on liquid-liquid microextraction and fluorimetric determination was developed for the determination of traces of the Zn2+ ion using 5-(8-hydroxy-2-quinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane (L) as a sensitive and selective fluorimetric sensor, with λex = 373 nm and λem = 530 nm, and hexanol as the extracting organic solvent. In the designed FIA system, the phase separation takes place via gravitation forces in the absence of any segmenter. The influence of pH and ionic strength of the solution, amount of ligand, nature of counter ion, volume of organic solvent, extraction time and coil length was investigated. Under optimized experimental conditions, the calibration curve found to be liner over a concentration range of 0.025-4.53 μg mL−1 (R2 = 0.9951) with a limit of detection of 2.3 ng mL−1. The enrichment factor was 45 and relative standard deviation for 7 replicate determinations was 2.43%. The method is very fast and uses low levels of organic solvents. The proposed method was applied successfully to the determination of zinc(II) in human hair, human serum and two inorganic sludge samples.  相似文献   

17.
Phenolic compounds are a sort of common pollutants in water. Phenol index becomes an expedite indicator for the evaluation of the contamination level of water samples, in spite of the knowledge of the individual phenol and its derivatives are also important.In this work, an environmental friendly method for the determination of phenols, using a segmented flow system based on the conventional method's reactions without the liquid-liquid extraction step, was validated.Three linear dynamic ranges using C6H5OH: 1-10 μg l−1, 10-200 μg l−1 and 0.2-2.5 mg l−1, with a coefficient of variation lower than 2%, were obtained. Several method's performance parameters were determined: limits of detection, limits of quantification, precision through duplicate analysis and trueness using the reference materials purchased from LGC Promochem, RTC no. QCI-043-2 Lot:P1. Measurement uncertainty was evaluated using an interlaboratory approach based on proficiency testing data. Relative combined uncertainty for phenols in water samples, , of 0.054 were obtained, in according to those imposed by the Portuguese Legislation: target for 1 μg l−1 of phenol (surface waters) and target for 500 μg l−1 of phenol (wastewaters).A high efficiency reduction and elimination of reagents and wastes, reduction of analysis time and exposition of the analyst were also obtained.  相似文献   

18.
A quantitative liquid chromatographic-electrospray ionization mass spectrometric method for the determination of dexamethasone in sheep plasma has been developed and validated. The samples were extracted using solid-phase extraction cartridges with mixed reversed-phase materials (oasis-HLB). The chromatographic separation was performed on a reversed-phase XTerrra MS C18 column ( mm; 5 μm) using a mobile phase consisting of 65% methanol in water containing 0.1% (v/v) formic acid, pumped at a flow rate of 0.30 ml min−1. The analyte was detected after positive electrospray ionization using selected ion monitoring (SIM) mode. The probe heater temperature was set at 260 °C, the capillary voltage was set at 3.5 kV and the source block voltage (AQAmax) was set at 30 V. The method was fully validated. Calibration graphs were linear (r better than 0.998, n=11), in concentration ranges 6-1000 ng ml−1 for dexamethasone. The intra- and inter-day RSD values were less than 24.1% (n=6). The limits of detection and quantitation for dexamethasone were found to be 1 and 6 ng ml−1, respectively. The efficiency of the solid phase extraction procedure was found to be 92.4% for dexamethasone. The method was further applied to a pilot kinetic study in order to assess the main pharmacokinetic parameters of dexamethasone in sheep.  相似文献   

19.
A modified SBA-15 mesoporous silica material NH2-SBA-15 was synthesized successfully by grafting γ-aminopropyl-triethoxysilane. The material was characterized using transmission electron microscopy (TEM) and Fourier transform infrared/Raman (FT-IR/Raman) spectroscopy, and used for the first time in a flow injection on-line solid phase extraction (SPE) coupled with flame atomic absorption spectrometry (FAAS) to detect trace Cr (VI). Effective sorption of Cr (VI) was achieved at pH 2.0 with no interference from Cr (III) and other ions and 0.5 mol L−1 NH3·H2O solution was found optimal for the complete elution of Cr (VI). An enrichment factor of 44 and was achieved under optimized experimental conditions at a sample loading of 2.0 mL min−1 sample loading (300 s) and an elution flow rate of 2.0 mL min−1 (24 s). The precision of the 11 replicate Cr (VI) measurements was 2.1% at the 100 μg L−1 level with a detection limit of 0.2 μg L−1 (3 s, n = 10) using the FAAS. The developed method was successfully applied to trace chromium determination in waste water. The accuracy was validated using a certified reference material of riverine water (GBW08607).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号