首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 526 毫秒
1.
The synthesis and magnetic properties of the high-spin tetranuclear cluster [Mn(III)(2)Mn(II)(2)(O(2)CC(CH(3))(3))(2)(teaH(2))(2)(teaH)(2)](O(2)CC(CH(3))(3))(2) (1) (where teaH(3) = triethanolamine) is described. Complex 1 is the pivalate analogue of our previously reported family of tetranuclear mixed-valence carboxylate clusters. The teaH(2)(-) and teaH(2-) anions in complex 1 act as oxygen donors in the {Mn(III)(2)Mn(II)(2)O(2)} "butterfly" core. Detailed dc and ac magnetic susceptibility measurements and magnetisation isotherms have been made and show that intra-cluster ferromagnetic coupling is occurring between the S = 2 Mn(III) and S = 5/2 Mn(II) ions to yield a S = 9 ground state and the g, J(bb) and J(wb) parameters have been deduced (b = body, w = wingtip). Incorporation of the acetylacetonate (acac(-)) ligand has led to three new clusters: [Mn(III)(2)Mn(II)(2)(O(2)CPh)(4)(teaH)(2)(acac)(2)].MeCN (2), [Mn(III)(2)Mn(II)(2)(teaH)(2)(acac)(4)(MeOH)(2)](ClO(4))(2) (3) and [Mn(III)(2)Mn(II)(2)(bheapH)(2)(acac)(4)(MeOH)(2)](ClO(4))(2) (4) (where bheapH(3) = 1-[N,N-bis(2-hydroxyethyl)amino]-2-propanol). Unlike any previously reported tetranuclear clusters containing the Mn(II)(2)Mn(III)(2) core, 2, 3, and 4 exhibit a reversal in their Mn(II)(2)Mn(III)(2) oxidation state distribution. In these clusters, the "wing-tip" Mn atoms exhibit Mn(III) (S = 2) oxidation states while the Mn(II) ions occupy the central "body" positions. Furthermore, the cores in 2, 3, and 4 contain at least one mu(2)-oxygen based bridging ion as opposed to the standard two mu(3)-oxygen bridges previously reported. More precisely, cluster 2 exhibits one mu(3)-O bridge and two mu(2)-bridges in a {Mn(II)(2)Mn(III)(2)O(3)} core while clusters 3 and 4 exhibit two mu(2)-O linkers within the {Mn(II)(2)Mn(III)(2)O(2)} core. All display trigonal prismatic coordination around the Mn(II) centres. These structural and oxidation state differences lead to very different magnetic coupling interactions between the four Mn(II/III) centres compared to 1. Direct current magnetic susceptibility measurements and magnetisation isotherms show that clusters 3 and 4 have ground states of S = 1. The g, J(bb) and J(wb) parameters have been deduced.  相似文献   

2.
The synthesis, magnetic characterization and X-ray crystal structures are reported for five new manganese compounds, [Mn(III)(teaH(2))(sal)]·(1/2)H(2)O (1), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(4)]·6MeOH (2), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·7MeOH (3), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·2MeOH·Et(2)O (4) and [K(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(H(2)O)(2)](n)·5MeOH (5). Complex 1 is a mononuclear compound, formed via the reaction of Mn(NO(3))(2)·4H(2)O, triethanolamine (teaH(3)) and salicylic acid (salH(2)) in a basic methanolic solution. Compound 2 is a mixed-valent hetero-metallic cluster made up of a Mn(8)Na(2) decanuclear core and is formed via the reaction of sodium azide (NaN(3)) with 1. Compounds 3-5 are isolated as 1- or 2-D coordination polymers, each containing the decanuclear Mn(8)M(2) (M = Na(+) or K(+)) core building block as the repeating unit. Compound 3 is isolated when 1 is reacted with NaN(3) over a very short reaction time and forms a 1-D coordination polymer. Each unit displays inter-cluster bridges via the O-atoms of teaH(2-) ligands bonding to the sodium ions of an adjacent cluster. Increasing the reaction time appears to drive the formation of 4 which forms 2-D polymeric sheets and is a packing polymorph of 3. The addition of KMnO(4) and NaN(3) to 1 resulted in compound 5, which also forms a 1-D coordination polymer of the decanuclear core unit. The 1-D chains are now linked via inter-cluster potassium and salicylate bridges. Solid state DC susceptibility measurements were performed on compounds 1-5. The data for 1 are as expected for an S = 2 Mn(III) ion, with the isothermal M vs. H data being fitted by matrix diagonalization methods to give values of g and the axial (D) and rhombic (E) zero field splitting parameters of 2.02, -2.70 cm(-1) and 0.36 cm(-1) respectively. The data for 2-5, each with an identical Mn(II)(4)Mn(III)(4) metallic core, indicates large spin ground states, with likely values of S = 16 (±1) for each. Solid state AC susceptibility measurements confirm the large spin ground state values and is also suggestive of SMM behaviour for 2-5 as observed via the onset of frequency dependent out-of-phase peaks.  相似文献   

3.
Synthetic methods are described that have resulted in the formation of seven heterometallic complexes, all of which contain partially deprotonated forms of the ligand triethanolamine (teaH(3)). These compounds are [Mn(III)(4)Co(III)(2)Co(II)(2)O(2)(teaH(2))(2)(teaH)(0.82)(dea)(3.18)(O(2)CMe)(2)(OMe)(2)](BF(4))(2)(O(2)CMe)(2)·3.18MeOH·H(2)O (1), [Mn(II)(2)Mn(III)(2)Co(III)(2)(teaH)(4)(OMe)(2)(acac)(4)](NO(3))(2)·2MeOH (2), [Mn(III)(2)Ni(II)(4)(teaH)(4)(O(2)CMe)(6)]·2MeCN (3), [Mn(III)(2)Co(II)(2)(teaH)(2)(sal)(2)(acac)(2)(MeOH)(2)]·2MeOH (4), [Mn(II)(2)Fe(III)(2)(teaH)(2)(paa)(4)](NO(3))(2)·2MeOH·CH(2)Cl(2) (5), [Mn(II)Mn(III)(2)Co(III)(2)O(teaH)(2)(dea)(Iso)(OMe)(F)(2)(Phen)(2)](BF(4))(NO(3))·3MeOH (6) and [Mn(II)(2)Mn(III)Co(III)(2)(OH)(teaH)(3)(teaH(2))(acac)(3)](NO(3))(2)·3CH(2)Cl(2) (7). All of the compounds contain manganese, combined with 3d transition metal ions such as Fe, Co and Ni. The crystal structures are described and examples of 'rods', tetranuclear 'butterfly' and 'triangular' Mn(3) cluster motifs, flanked in some cases by diamagnetic cobalt(III) centres, are presented. Detailed DC and AC magnetic susceptibility and magnetization studies, combined with spin Hamiltonian analysis, have yielded J values and identified the spin ground states. In most cases, the energies of the low-lying excited states have also been obtained. The features of note include the 'inverse butterfly' spin arrangement in 2, 4 and 5. A S = 5/2 ground state occurs, for the first time, in the Mn(III)(2)Mn(II) triangular moiety within 6, the many other reported [Mn(3)O](6+) examples having S = ? or 3/2 ground states. Compound 7 provides the first example of a Mn(II)(2)Mn(III) triangle, here within a pentanuclear Mn(3)Co(2) cluster.  相似文献   

4.
Three polynuclear complexes, [NiNa(μ(1,1,1)-N(3))(μ-hmb)(2)(DMF)](2), (1), [Ni(4)(μ(3)-OMe)(4)(heb)(4)(MeOH)(1.05)(H(2)O)(2.95)], (2) and [Ni(III)(OH)(6)(hmb)(6)Ni(II)(6)]·(ClO(4))(3) (3) (Hhmb = 2-hydroxy-3-methoxy-benzaldehyde; Hheb = 2-hydroxy-3-ethoxy-benzaldehyde), were prepared by reaction of the appropriate ligand with nickel(II) perchloride hexahydrate under solvothermal conditions. All compounds were characterized by elemental analysis, IR spectroscopy and X-ray single-crystal diffraction. Compound 1 exhibits a centrosymmetric heterotetranuclear cluster which represents the first nickel complex to possess two connected face-sharing cubes structure {Ni(2)Na(2)N(2)O(4)}. Compound 2 has a tetranuclear Ni cluster with a cubane topology in which the Ni(II) and the oxygen atoms from the methanol ligands occupying alternate vertices of the cube. Compound 3 consisits of a mixed-valence [Ni(III)(OH)(6)(hmb)(6)Ni(II)(6)](3+) subunits and it represents the first nickel {Ni(II)(6)Ni(III)} complex to possess a planar hexagonal disc-like structure. The results show that the minor ligand modifications or solvent change have a key role in the structural control of the self-assembly process. Magnetic properties of 1-3 in the 300-2 K have been discussed. The {Ni(2)Na(2)} (1) and {Ni(4)} (2) core display dominant ferromagnetic interactions from the nature of the binding modes through μ(3)-N(3)(-) or μ(3)-OCH(3)(-), while {Ni(II)(6)Ni(III)} core (3) displays dominant anti-ferromagnetic interactions from the nature of the binding modes through μ(3)-OH(-).  相似文献   

5.
Three new polynuclear complexes, [Co(7)(bm)(12)]·(ClO(4))(2)·13H(2)O (1), [Co(4)(bm)(4)Cl(4)(C(3)H(7)OH)(4)] (2), and [Co(4)(bm)(4)(μ-HCO(2))(2)(μ(2)-HCO(2))(2)(C(3)H(7)OH)(2)] (3) (Hbm = (1H-Benzimidazol)-methanol), have been synthesized and characterized by elemental analysis, IR, powder X-ray diffraction and X-ray single-crystal diffraction. Compound 1 features a centrosymmetric wheel-like heptanuclear Co(II) cluster. Compound 2 having a I4(1)/a space group exhibits a tetranuclear Co(II) cluster with a cubane topology in which the central Co(II) ion and oxygen atoms from bm occupy the alternate vertices of the cube. However, compound 3 has a tetranuclear Co(II) cluster with a C2/c space group different from that of compound 2. These results show that the geometries and sizes of the corresponding anions as well as their coordinating and hydrogen-bonding properties are essential in determining the final structures of the assemblies. Magnetic properties of 1-3 in the 2-300 K have also been discussed. The {Co(7)} (1) and {Co(4)} (2) cores display dominant ferromagnetic interactions while the {Co(4)} (3) core displays dominant anti-ferromagnetic interactions.  相似文献   

6.
Following a bottom-up approach to nanomaterials, we present a rational synthetic route from hexacyanometalates [M(CN)(6)](3-) (M=Cr(III), Co(III)) cores to well-defined heptanuclear complexes. By changing the nature of the metallic cations and using a localised orbital model it is possible to control and to tune the ground state spin value. Thus, with M=Cr(III), d(3), S=3/2, three heptanuclear species were built and characterised by mass spectrometry in solution, by single-crystal X-ray diffraction and by powder magnetic susceptibility measurements, [Cr(III)(CNbondM'L(n))(6)](9+) (M'=Cu(II), Ni(II), Mn(II), L(n)=polydentate ligand), showing spin ground states S(G)=9/2 [Cu(II)], with ferromagnetic interactions J(Cr,Cu)=+45 cm(-1), S(G)=15/2 [Ni(II)] and J(Cr,Ni)=+17.3 cm(-1), S(G)=27/2 [Mn(II)], with an antiferromagnetic interaction J(Cr,Mn)=-9 cm(-1), (interaction Hamiltonian H=-J(Cr,M) [S(Cr)Sigma(i)S(M)(i)], i=1-6). With M=Co(III), d(6), S=0, the heptanuclear analogues [Co(III)(CN-M'L(n))(6)](9+) (M'=Cu(II), Ni(II), Mn(II)) were similarly synthesised and studied. They present a singlet ground state and allow us to evaluate the weak antiferromagnetic coupling constant between two next-nearest neighbours M'-Co-M'.  相似文献   

7.
The exploration in two hydro(solvo)thermal reaction systems As/S/Mn(2+)/phen/methylamine aqueous solution and As/S/Mn(2+)/2,2'-bipy/H(2)O affords five new manganese thioarsenates with diverse structures, namely, (CH(3)NH(3)){[Mn(phen)(2)](As(V)S(4))}·phen (1 and 1'), (CH(3)NH(3))(2){[Mn(phen)](2)(As(V)S(4))(2)} (2), {[Mn(phen)(2)](As(III)(2)S(4))}(n) (3), {[Mn(phen)](3)(As(III)S(3))(2)}·H(2)O (4), and {[Mn(2,2'-bipy)(2)](2)(As(V)S(4))}[As(III)S(S(5))] (5). Compound 1 comprises a {[Mn(phen)(2)](As(V)S(4))}(-) complex anion, a monoprotonated methylamine cation and a phen molecule. Compound 2 contains a butterfly like {[Mn(phen)](2)(As(V)S(4))(2)}(2-) anion charge compensated by two monoprotonated methylamine cations. Compound 3 is a neutral chain formed by a helical (1)(∞)(As(III)S(2)(-)) vierer chain covalently bonds to [Mn(II)(phen)](2+) complexes via all its terminal S atoms. Compound 4 features a neutral chain showing the stabilization of noncondensed (As(III)S(3))(3-) anions in the coordination of [Mn(II)(phen)](2+) complex cations. Compound 5 features a mixed-valent As(III)/As(V) character and an interesting chalcogenidometalates structure, where a polycation formed by the connection of two [Mn(2,2'-bipy)(2)](2+) complex cation and a (As(V)S(4))(3-) anion acts as a countercation for a polythioarsenate anion, [As(III)S(S(5))](-). The title compounds exhibit optical gaps in the range 1.58-2.48 eV and blue photoluminescence. Interestingly, compound 1 displays a weak second harmonic generation (SHG) response being about 1/21 times of KTP (KTiOPO(4)). Magnetic measurements show paramagnetic behavior for 1 and dominant antiferromagnetic behavior for 2-5. Of particular interest is 4, which is the first manganese chalcogenide showing spin-canting characteristic.  相似文献   

8.
The synthesis and characterization of a family of Mn(2)(III)Mn(2)(II)Ln(III)(2) complexes (Ln = Gd (1), Tb (2), Dy (3), and Ho (4)) of formula [Mn(4)Ln(2)O(2)(O(2)CBu(t))(6)(edteH(2))(2)(NO(3))(2)] are reported, where edteH(4) is N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine. The analogous Mn(4)Y(2) (5) complex has also been prepared. They were obtained from reaction of Ln(NO(3))(3) or Y(NO(3))(3) with Mn(O(2)CBu(t))(2), edteH(4), and NEt(3) in a 2:3:1:2 molar ratio. The crystal structures of representative 1 and 2 were obtained, and their core consists of a face-fused double-cubane [Mn(4)Ln(2)(μ(4)-O(2-))(2)(μ(3)-OR)(4)] unit. Such double-cubane units are extremely rare in 3d metal chemistry and unprecedented in 3d-4f chemistry. Variable-temperature, solid-state dc and ac magnetic susceptibility studies on 1-5 were carried out. Fitting of dc χ(M)T vs T data for 5 gave J(bb) (Mn(III)···Mn(III)) = -32.6(9) cm(-1), J(wb) (Mn(II)···Mn(III)) = +0.5(2) cm(-1), and g = 1.96(1), indicating a |n, 0, n> (n = 0-5) 6-fold-degenerate ground state. The data for 1 indicate an S = 12 ground state, confirmed by fitting of magnetization data, which gave S = 12, D = 0.00(1) cm(-1), and g = 1.93(1) (D is the axial zero-field splitting parameter). This ground state identifies the Mn(II)···Gd(III) interactions to be ferromagnetic. The ac susceptibility data independently confirmed the conclusions about 1 and 5 and revealed that 2 displays slow relaxation of the magnetization vector for the Mn(4)Tb(2) analogue 2. The latter was confirmed as a single-molecule magnet by observation of hysteresis below 0.9 K in magnetization vs dc field scans on a single crystal of 2·MeCN on a micro-SQUID apparatus. The hysteresis loops also displayed well-resolved quantum tunneling of magnetization steps, only the second 3d-4f SMM to do so.  相似文献   

9.
A straightforward approach to heterometallic Mn-Fe cluster-based coordination polymers is presented. By employing a mixed-valent μ(3)-oxo trinuclear manganese(II/III) pivalate cluster, isolated as [Mn(II)Mn(III)(2)O(O(2)CCMe(3))(6)(hmta)(3)]·(solvent) (hmta = hexamethylenetetramine; solvent = n-propanol (1), toluene (2)) in the reaction with a μ(3)-oxo trinuclear iron(III) pivalate cluster compound, [Fe(3)O(O(2)CCMe(3))(6)(H(2)O)(3)]O(2)CCMe(3)·2Me(3)CCO(2)H, three new heterometallic {Mn(II)Fe(III)(2)} cluster-based coordination polymers were obtained: the one-dimensional polymer chain compounds {[MnFe(2)O(O(2)CCMe(3))(6)(hmta)(2)]·0.5MeCN}(n) (3) and {[MnFe(2)O(O(2)CCMe(3))(6)(hmta)(2)]·Me(3)CCO(2)H·(n-hexane)}(n) (4) and the two-dimensional layer compound {[MnFe(2)O(O(2)CCMe(3))(6)(hmta)(1.5)]·(toluene)}(n) (5). Single-crystal X-ray diffraction analysis reveals a μ(3)-oxo trinuclear pivalate cluster building block as the main constituent in all polymer compounds. Different M:hmta ratios in 1-5 are related to the different structural functions of the N-containing ligand. In clusters 1 and 2, three hmta ligands are monodentate, whereas in chains 3 and 4 two hmta ligands act as bridging ligands and one is a monodentate ligand; in 5, all hmta molecules act as bidentate bridges. Magnetic studies indicate dominant antiferromagnetic interactions between the metal centers in both homometallic {Mn(3)}-type clusters 1 and 2 and heterometallic {MnFe(2)}-type coordination polymers 3-5. Modeling of the magnetic susceptibility data to a isotropic model Hamiltonian yields least-squares fits for the following parameters: J(1)(Mn(II)-Mn(III)) = -6.6 cm(-1) and J(2)(Mn(III)-Mn(III)) = -5.4 cm(-1) for 1; J(1) = -5.5 cm(-1) and J(2)(Mn(III)-Mn(III)) = -3.9 cm(-1) for 2; J(1)(Mn(II)-Fe(III)) = -17.1 cm(-1) and J(2)(Fe(III)-Fe(III)) = -43.7 cm(-1) for 3; J(1) = -23.8 cm(-1) and J(2) = -53.4 cm(-1) for 4; J(1) = -13.3 cm(-1) and J(2) = -35.4 cm(-1) for 5. Intercluster coupling plays a significant role in all compounds 1-5.  相似文献   

10.
The first heterometallic copper-cerium polyoxometalate, [{Ce(IV)(OAc)}Cu(II)(3)(H(2)O)(B-α-GeW(9)O(34))(2)](11-) (1), is composed of an unprecedented copper(II)-trisubstituted Weakley-type tungstogermanate subunit stabilized by coordination of a {Ce(OAc)}(3+) group at the vacant position. The title species contains a central {Ce(IV)Cu(II)(3)O(18)} rhomblike cluster that belongs to a new {(4f(ext))(3d(ext))(3d(int))(2)} type and magnetically behaves as a triangular Cu(3) system with overall antiferromagnetic exchange affected by the structural distortions the vicinity of diamagnetic Ce(IV) induces.  相似文献   

11.
The synthesis, X-ray data, and electronic structures of two manganese(III) 1D polymers ligated by tetrachlorocatechol, [Mn(2)(III)(H(2)L(1))(Cl(4)Cat)(4).2H(2)O](infinity) (1) and [Mn(2)(III)(H(2)L(2))(Cl(4)Cat)(4).2CH(3)CN.2H(2)O](infinity) (2), are reported. The electronic structures of the complexes have been determined by UV-vis-near-IR, IR, electron paramagnetic resonance (EPR), and magnetic susceptibility measurements. Both 1 and 2 are air stable in the solid state and in solution, unlike most of the previously reported o-quinone-chelated transition-metal complexes. Electronic spectroscopy exhibits a strong near-IR band near 1900 nm for both, suggesting the presence of a mixed-valence semiquinone-catecholate oxidation state of the catechol ligands, Mn(2)(III)(Cl(4)Cat)(2)(Cl(4)SQ)(2), together with the pure catecholate forms. The presence of this isomer was further supported by EPR and magnetic susceptibility measurements. The complexes undergo intramolecular electron transfer (valence tautomerism) upon an increase of the temperature involving the equilibrium Mn(2)(III)(Cl(4)Cat)(2)(Cl(4)SQ)(2) <==> Mn(2)(II)(Cl(4)SQ)(4). This phenomenon is reversible and is studied in solution using UV-vis-near-IR spectroscopy.  相似文献   

12.
A mixed-valence {Mn(32)} complex, containing Mn(II), Mn(III) and Mn(IV) ions, with a probable S = 5 ground state, utilizes pivalate as a capping ligand and a variety of oxo-type bridging ligands. AC susceptibility data on fresh samples suggest that the Mn(32) complex is one of the largest nuclearity single molecule magnets found to date.  相似文献   

13.
Synthesis, crystal structures and magnetic studies are reported for four new heterometallic Cu(II)-Ln(III) clusters. The reaction of Cu(NO(3))(2)·3H(2)O with triethanolamine (teaH(3)), pivalic acid, triethylamine and Ln(NO(3))(3)·6H(2)O (Ln=Gd, Tb, Dy and Ho) results in the formation of four isostructural nonanuclear complexes of general formula [Cu(II)(5)Ln(III)(4)O(2)(teaH)(4){O(2)CC(CH(3))(3)}(2)(NO(3))(4)(OMe)(4)]·2MeOH·2Et(2)O [Ln=Gd (1), Tb (2), Dy (3) and Ho (4)]. The metal core of each cluster is made up of four face- and vertex-sharing tetrahedral units. Solid-state DC magnetic susceptibility studies reveal competing anti- and ferromagnetic interactions within each cluster leading to large-spin ground states for 1-4. Solid-state AC magnetic susceptibility studies show frequency-dependent out-of-phase (χ'(M)) signals for 2-4 below 4 K, suggestive of single-molecule magnet behaviour. Ab initio calculations on one of the anisotropic examples (3) provided a rare set of J values for Dy-Cu and Cu-Cu exchange interactions (Dy-Dy zero), some ferro- and some antiferromagnetic in character, that explain its magnetic behaviour.  相似文献   

14.
The series of compounds [Mn(bpia)(mu-OAc)](2)(ClO(4))(2) (1), [Mn(2)(bpia)(2)(muO)(mu-OAc)](ClO(4))(3).CH(3)CN (2), [Mn(bpia)(mu-O)](2)(ClO(4))(2)(PF(6)).2CH(3)CN (3), [Mn(bpia)(Cl)(2)](ClO)(4) (4), and [(Mn(bpia)(Cl))(2)(mu-O)](ClO(4))(2).2CH(3)CN (5) (bpia = bis(picolyl)(N-methylimidazol-2-yl)amine) represents a structural, spectroscopic, and functional model system for manganese catalases. Compounds 3 and 5 have been synthesized from 2 via bulk electrolysis and ligand exchange, respectively. All complexes have been structurally characterized by X-ray crystallography and by UV-vis and EPR spectroscopies. The different bridging ligands including the rare mono-mu-oxo and mono-mu-oxo-mono-mu-carboxylato motifs lead to a variation of the Mn-Mn separation across the four binuclear compounds of 1.50 A (Mn(2)(II,II) = 4.128 A, Mn(2)(III,III) = 3.5326 and 3.2533 A, Mn(2)(III,IV) = 2.624 A). Complexes 1, 2, and 3 are mimics for the Mn(2)(II,II), the Mn(2)(III,III), and the Mn(2)(III,IV) oxidation states of the native enzyme. UV-vis spectra of these compounds show similarities to those of the corresponding oxidation states of manganese catalase from Thermus thermophilus and Lactobacillus plantarum. Compound 2 exhibits a rare example of a Jahn-Teller compression. While complexes 1 and 3 are efficient catalysts for the disproportionation of hydrogen peroxide and contain an N(4)O(2) donor set, 4 and 5 show no catalase activity. These complexes have an N(4)Cl(2) and N(4)OCl donor set, respectively, and serve as mimics for halide inhibited manganese catalases. Cyclovoltammetric data show that the substitution of oxygen donor atoms with chloride causes a shift of redox potentials to more positive values. To our knowledge, complex 1 is the most efficient binuclear functional manganese catalase mimic exhibiting saturation kinetics to date.  相似文献   

15.
The reaction of N,N-bis(2-pyridylmethyl)-2-aminoethanol (bpaeOH), NaSCN/NaN(3), and metal (M) ions [M = Mn(II), Fe(II/III), Co(II)] in MeOH, leads to the isolation of a series of monomeric, trimeric, and tetrameric metal complexes, namely [Mn(bpaeOH)(NCS)(2)] (1), [Mn(bpaeO)(N(3))(2)] (2), [Fe(bpaeOH)(NCS)(2)] (3), [Fe(4)(bpaeO)(2)(CH(3)O)(2)(N(3))(8)] (4), [Co(bpaeOH)(NCS)(2)] (5), and [Co(3)(bpaeO)(2)(NO(3))(N(3))(4)](NO(3)) (6). These compounds have been investigated by single crystal X-ray diffractometry and magnetochemistry. In complex 1 the Mn(II) is bonded to one bpaeOH and two thiocyanate ions, while in complex 2 it is coordinated to a deprotonated bpaeO(-) and two azide ions. The oxidation states of manganese ions are 2+ for 1 and 3+ for 2, respectively, indicating that the different oxidation states depend on the type of binding anions. The structures of monomeric iron(II) and cobalt(II) complexes 3 and 5 with two thiocyanate ions are isomorphous to that of 1. Compounds 1, 2, 3, and 5 exhibit high-spin states in the temperature range 5 to 300 K. 4 contains two different iron(III) ions in an asymmetric unit, one is coordinated to a deprotonated bpaeO(-), an azide ion, and a methoxy group, and the other is bonded to three azide ions and two oxygens from bpaeO(-) and a methoxy group. Two independent iron(III) ions in 4 form a tetranuclear complex by symmetry. 4 displays both ferromagnetic and antiferromagnetic couplings (J = 9.8 and -14.3 cm(-1)) between the iron(III) ions. 6 is a mixed-valence trinuclear cobalt complex, which is formulated as Co(III)(S = 0)-Co(II)(S = 3/2)-Co(III)(S = 0). The effective magnetic moment at room temperature corresponds to the high-spin cobalt(II) ion (~4.27 μ(B)). Interestingly, 6 showed efficient catalytic activities toward various olefins and alcohols with modest to excellent yields, and it has been proposed that a high-valent Co(V)-oxo species might be responsible for oxygen atom transfer in the olefin epoxidation and alcohol oxidation reactions.  相似文献   

16.
The Mn cluster in photosystem II (PS II) is believed to play an important role in the UV photoinhibition of green plants, but the mechanism is still not clear at a molecular level. In this work, the photochemical stability of [Mn(III)(O)(2)Mn(IV)(H(2)O)(2)(Terpy)(2)](NO(3))(3) (Terpy=2,2':6',2'-terpyridine), designated as Mn-oxo mixed-valence dimer, a well characterized functional model of the oxygen-evolving complex in PS II, was examined in aqueous solution by exposing the complex to excess light irradiation at six different wavelengths in the range of 250 to 700 nm. The photodamage of the Mn-oxo mixed-valence dimer was confirmed by the decrease of its oxygen-evolution activity measured in the presence of the chemical oxidant oxone. Ultraviolet light irradiation induced a new absorption peak at around 400-440 nm of the Mn-oxo mixed-valence dimer. Visible light did not have the same effect on the Mn-oxo mixed-valence dimer. We speculate that the spectral change may be caused by conversion of the Mn(III)O(2)Mn(IV) dimer into a new structure--Mn(IV)O(2)Mn(IV). In the processes, the appearance of a 514 nm fluorescence peak was observed in the solution and may be linked to the hydration or protonation of Terpy ligand in the Mn-oxo dimer. In comparing the response of the PS II functional model compound and the PS II complex to excess light radiation, our results support the idea that UV photoinhibition is triggered at the Mn(4)Ca center of the oxygen-evolution complex in PS II by forming a modified structure, possibly a Mn(IV) species, and that the reaction of Mn ions is likely the initial step.  相似文献   

17.
Treatment of [M(II)(en)(3)][OTs](2) or methanolic ethylenediamine solutions containing transition metal p-toluenesulfonates (M(II) = Mn, Co) with aqueous K(4)M(IV)(CN)(8).2H(2)O or Cs(3)M(V)(CN)(8) (M(IV) = Mo, W; M(V) = Mo) affords crystalline clusters of [M(II)(en)(3)][cis-M(II)(en)(2)(OH(2))(mu-NC)M(IV)(CN)(7)].2H(2)O (M(IV) = Mo; M(II) = Mn, 1; Ni, 5; M(IV) = W; M(II) = Mn, 2; Ni, 6) and [cis-M(II)(en)(2)(OH(2))](2)[(mu-NC)(2)M(IV)(CN)(6)].4H(2)O (M(IV) = Mo; M(II) = Co, 3; Ni, 7; M(IV) = W; M(II) = Co, 4) stoichiometry. Each cluster contains cis-M(II)(en)(2)(OH(2))(mu-NC)(2+) units that likely result from dissociative loss of en from [M(II)(en)(3)](2+), affording cis-M(II)(en)(2)(OH(2))(2)(2+) intermediates that are trapped by M(IV)(CN)(8)(4-).  相似文献   

18.
Amine-templated vanadium sulfates of the formula [HN(CH(2))(6)NH][(V(IV)O)(2)(OH)(2)(SO(4))(2)].H(2)O, I, [H(3)N(CH(2))(2)NH(3)][V(III)(OH)(SO(4))(2)].H(2)O, II, and [H(2)N(CH(2))(4)NH(2)][(V(IV)O)(H(2)O)(SO(4))(2)], III, have been prepared under hydrothermal conditions. These vanadium sulfates add to the new emerging family of organically templated metal sulfates. Compound I has a linear chain structure consisting of V(2)O(8) square-pyramid dimers connected by corner-sharing SO(4) tetrahedra, creating four-membered rings along the chain. Both II and III possess simple linear chain topologies formed by VO(6) octahedra and SO(4) tetrahedra, with II having the tancoite chain structure. Compound I crystallizes in the triclinic space group P1 (No. 2) with a = 7.4852(4) A, b = 9.5373(5) A, c = 11.9177(6) A, alpha = 77.22 degrees, beta = 76.47(2) degrees, gamma = 80.86 degrees, Z = 2. Compound II: monoclinic, space group P2(1)/c (No. 14), a = 6.942(2) A, b = 10.317(3) A, c = 15.102(6) A, beta = 90.64(4) degrees, Z = 4. Compound III: triclinic, space group P1 (No. 2) with a = 6.2558(10) A, b = 7.0663(14) A, c = 15.592(4) A, alpha = 90.46(2) degrees, beta = 90.47(2) degrees, gamma = 115.68(2) degrees, Z = 2. Magnetic susceptibility measurements reveal weak antiferromagnetic interactions in I and III and ferromagnetic interactions in II.  相似文献   

19.
The Cu(SO(3))(4)(7-) anion, which consists of a tetrahedrally coordinated Cu(I) centre coordinated to four sulfur atoms, is able to act as a multidentate ligand in discrete and infinite supramolecular species. The slow oxidation of an aqueous solution of Na(7)Cu(SO(3))(4) yields a mixed oxidation state, 2D network of composition Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O. The addition of Cu(II) and 2,2'-bipyridine to an aqueous Na(7)Cu(SO(3))(4) solution leads to the formation of a pentanuclear complex of composition {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(+); a combination of hydrogen bonding and π-π stacking interactions leads to the generation of infinite parallel channels that are occupied by disordered nitrate anions and water molecules. A pair of Cu(SO(3))(4)(7-) anions each act as a tridentate ligand towards a single Mn(II) centre when Mn(II) ions are combined with an excess of Cu(SO(3))(4)(7-). An anionic pentanuclear complex of composition {[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)} is formed when Fe(II) is added to a Cu(+)/SO(3)(2-) solution. Hydrated ferrous [Fe(H(2)O)(6)(2+)] and sodium ions act as counterions for the complexes and are responsible for the formation of an extensive hydrogen bond network within the crystal. Magnetic susceptibility studies over the temperature range 2-300 K show that weak ferromagnetic coupling occurs within the Cu(II) containing chains of Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O, while zero coupling exists in the pentanuclear cluster {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(NO(3))·H(2)O. Weak Mn(II)-O-S-O-Mn(II) antiferromagnetic coupling occurs in Na(H(2)O)(6){[Cu(I)(SO(3))(4)][Mn(II)(H(2)O)(2)](3)}, the latter formed when Mn was in excess during synthesis. The compound, Na(3)(H(2)O)(6)[Fe(II)(H(2)O)(6)](2){[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)}·H(2)O, contained trace magnetic impurities that affected the expected magnetic behaviour.  相似文献   

20.
The iron mixed-valence complex (n-C(3)H(7))(4)N[Fe(II)Fe(III)(dto)(3)] exhibits a novel type of phase transition called charge-transfer phase transition (CTPT), where the thermally induced electron transfer between Fe(II) and Fe(III) occurs reversibly at ~120 K, in addition to the ferromagnetic phase transition at T(C) = 7 K. To investigate the mechanism of the CTPT, we have synthesized a series of magnetically diluted complexes (n-C(3)H(7))(4)N[Fe(II)(1-x)Zn(II)(x)Fe(III)(dto)(3)] (dto = C(2)O(2)S(2); x = 0-1), and carried out magnetic susceptibility and dielectric constant measurements and (57)Fe M?ssbauer spectroscopy. With increasing Zn(II) concentration (x), the CTPT is gradually suppressed and disappears at x ≈ 0.13. On the other hand, the ferromagnetic transition temperature (T(C)) is initially enhanced from 7 K to 12 K between x = 0.00 and 0.05, despite the nonmagnetic nature of Zn(II) ions, and then it decreases monotonically from 12 K to 3 K with increasing Zn(II) concentration. This anomalous dependence of T(C) on Zn(II) concentration is related to a change in the spin configuration of the ferromagnetic state caused by the partial suppression of the CTPT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号