首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thioethers 4-tert-butyl-2,6-bis((2-(dimethylamino)ethylimino)methyl)phenyl(tert-butyl)sulfane (tBu-L3) and 4-tert-butyl-2,6-bis((2-(dimethylamino)ethylimino)methyl)phenyl(tert-butyl)sulfane (tBu-L4) react with PdCl2(NCMe)2 to give the dinuclear palladium thiophenolate complexes [(L3)Pd2Cl2]+ (2) and [(L4Pd2(mu-Cl)]2+ (3) (HL3= 2,6-bis((2-(dimethylamino)ethylimino)methyl)-4-tert-butylbenzenethiol, HL4 = 2,6-bis((2-(dimethylamino)ethylamino)methyl)-4-tert-butylbenzenethiol). The chloride ligands in could be replaced by neutral (NCMe) and anionic ligands (NCS-, N3-, CN-, OAc-) to give the diamagnetic Pd(II) complexes [(L3)Pd2(NCMe)2]3+ (4), [(L3)Pd2(NCS)2]+ (5), [(L3)Pd2(N3)2]+ (6), [{(L3)Pd2(mu-CN)}2]4+ (7) and [(L3)Pd2(OAc)]2+ (9). The nitrile ligands in and in [(L3)Pd2(NCCH2Cl)2]3+ are readily hydrated to give the corresponding amidato complexes [(L3)Pd2(CH3CONH)]2+ (8) and [(L3)Pd2(CH2ClCONH)]2+ (10). The reaction of [(L3)Pd2(NCMe)2]3+ with NaBPh4 gave the diphenyl complex [(L3)Pd2(Ph)2]+ (11). All complexes were either isolated as perchlorate or tetraphenylborate salts and studied by IR, 1H and 13C NMR spectroscopy. In addition, complexes 2[ClO4], 3[ClO4]2, 5[BPh4], 6[BPh4], 7[ClO4]4, 9[ClO4]2, 10[ClO4]2 and 11[BPh4] have been characterized by X-ray crystallography.  相似文献   

2.
A new ligand incorporating a dioxime moiety, (2E,3E)-3-[(2-{[(1E,2E)-2-(hydroxyimino)-1-methylpropylidene]amino}phenyl)imino]butan-2-one oxime, (H2Phmdo) (3) has been prepared by reacting 2,3-butanedionemono-{O-[4-(1-methyl-2-oxo-propylideneaminooxy)-2,3-bis-(1-methyl-2-oxo-propylideneaminooxy-methyl)-but-2-enyl]-oxime} (2) with 1,2-phenylenediamine. Mono-, di- and trinuclear copper(II) and/or nickel(II) complexes of H2Phmdo were characterized by elemental analyses, magnetic moments, 1H-n.m.r. and 13C-n.m.r., i.r. and mass spectral studies. The mononuclear copper(II) and nickel(II) complexes of H2Phmdo were found to have a 1:1 metal:ligand ratio. Elemental analyses, stoichiometric and spectroscopic data of the metal complexes indicated that the metal ions are coordinated to the oxime and imine nitrogen atoms (C=N). In the dinuclear complexes, in which the first Cu(II) or Ni(II) ion was complexed with nitrogen atoms of the oxime and imine groups, the second Cu(II) ion is ligated with dianionic oxygen atoms of the oxime groups and are linked to the 1,10-phenanthroline nitrogen atoms. The data support the proposed structure of H2Phmdo and its complexes.  相似文献   

3.
The phenoxido and alkoxido bridged neutral Zn(3) complex [Zn(3)(μ-H(2)bemp)(2)(μ(3)-emp)(2)] (1), with an angular Zn(3)(μ-OPh)(2)(μ-OEt)(2) core and capping nitrogen donors, was synthesized via simultaneous chelation-cum-bridging of the parent and hydrolysed ligands. Zinc(II) coordination triggered the solution phase imine (C=N) bond hydrolysis of H(3)bemp (2,6-bis-[(2-hydroxyethylimino)methyl]-4-methylphenol) and yielded the unexpected angular trinuclear Zn(II) complex 1, having structural similarity with the Zn(3) active site of P1 nuclease. H(3)bemp also displays a zinc(II) selective chelation-enhanced fluorescence response from strong metal ion coordination. Complexation of zinc(II) with H(3)bpmp (2,6-bis-[(3-hydroxypropylimino)methyl]-4-methylphenol), a close analogue of H(3)bemp, instead provides only mononuclear [Zn(H(2)bpmpH(N))(2)](ClO(4))(2)·2H(2)O (2·2H(2)O) (H(N) is the proton attached to an imine nitrogen atom) of two zwitterionic ligands, generated through a kind of coordination driven acid-base reaction, without showing any aggregation reaction. As the sole metal-organic precursor, both the complexes under pyrolytic conditions give ZnO nano structures of two morphologies.  相似文献   

4.
Synthesis and single crystal X-ray diffraction studies of four transition metal complexes [Mn(L1)](ClO4)2 (1), [Cu(L1)](ClO4)2 (2), [Ni2(L2)(NCS)6][Ni(L1)] (3) and [Mn(bzpy)(NCS)2] (4) with neutral ligands [L1 = N-(1-pyridin-2-yl-phenylidene)-N′-[2-({2-[(1-pyridin-2-yl phenylidene)amino]ethyl}amino)ethyl]ethane-1,2diamine, L2 = N-(1-pyridin-2-yl-phenylidene)-N′-[2-({2-[(1-pyridin-2-ylphenylidene)amino]ethyl}piperazine-1yl)ethyl]amine, bzpy = 2-benzoylpyridine] are reported. The trinuclear nickel(II) complex 3 is made of a dinuclear anion and a mononuclear cation. Variable-temperature magnetic susceptibility and variable-field magnetisation studies performed on 3 suggest weak antiferromagnetic coupling (J = −0.7 cm−1) between the two metals of the dinuclear entity, but no magnetic interaction between the anionic and cationic counterparts.  相似文献   

5.
《Polyhedron》2001,20(22-23):2829-2840
The complexes [M(L1R)2](BF4)2 (M=Ni, Co; L1R=2,6-dipyrazol-1-ylpyridine [L1H], 2,6-bis-{3-iso-propylpyrazol-1-yl}pyridine [L1Pri], 2,6-bis-{3-phenylpyrazol-1-yl}pyridine [L1Ph], 2,6-bis-{3-[2,4,6-trimethylphenyl]pyrazol-1-yl}pyridine [L1Mes]) and [M(L2)2](BF4)2 (M=Ni, Co; L2=2-{3-[2,4,6-trimethylphenyl]pyrazol-1-yl}-6-{5-[2,4,6-trimethylphenyl]pyrazol-1-yl}pyridine) have been prepared. Single crystal structure determinations of [M(L1H)2](BF4)2 (M=Ni, Co) and solvates of [Ni(L1Mes)2](BF4)2, [Co(L1Mes)2](ClO4)2 and [Co(L2)2](BF4)2 all show six-coordinate metal centres with local near-D2d symmetry. The L1Mes and L2 mesityl substituents have only a small effect on the MN{pyrazole} (M=Ni, Co) bond lengths in these compounds. The dd spectra of the complexes show that L1Mes is a significantly better donor ligand than L1H, L1Pri or L1Ph, and that L1Pri is a weaker ligand than might be expected purely on inductive grounds. A combination of UV–Vis/NIR, EPR, NMR and magnetic measurements have demonstrated that all the Co(II) compounds are high-spin in the solid state and in solution at 290 K.  相似文献   

6.
Dinuclear (V(IV)V(V)) oxophenoxovanadates of general formula [V2O3L] have been synthesized in excellent yields by reacting bis(acetylacetonato)oxovanadium(IV) with H3L in a 2:1 ratio in acetone under an N2 atmosphere. Here L3- is the deprotonated form of 2,6-bis[{{(2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L1), 2,6-bis[{{(5-methyl-2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L2), 2,6-bis[{{(5-tert-butyl-2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L3), 2,6-bis[{{(5-chloro-2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol(H3L4), 2,6-bis[{{(5-bromo-2-hydroxybenzyl)(N'N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L5), or 2,6-bis[{{(5-methoxy-2-hydroxybenzyl)(N'N'-(dimethylamino)ethyl)}methyl]-4-methylphenol (H3L6). In [V2O3L1], both the metal atoms have distorted octahedral geometry. The relative disposition of two terminal V=O groups in the complex is essentially cis. The O=V...V=O torsion angle is 24.6(2) degrees . The V-O(oxo)-V and V-O(phenoxo)-V angles are 117.5(4) and 93.4(3) degrees , respectively. The V...V bond distance is 3.173(5) A. X-ray crystallography, IR, UV-vis, and 1H and 51V NMR measurements show that the mixed-valence complexes contain two indistinguishable vanadium atoms (type III). The thermal ellipsoids of O2, O4, C10, C14, and C15 also suggests a type III complex in the solid state. EPR spectra of solid complexes at 77 K display a single line indicating the localization of the odd electron (3d(xy)1). Valence localization at 77 K is also consistent with the 51V hyperfine structure of the axial EPR spectra (3d(xy)1 ground state) of the complexes in frozen (77 K) dichloromethane solution: S = 1/2, g(parallel) approximately 1.94, g(perpendicular) approximately 1.98, A(parallel) approximately 166 x 10(-4) cm(-1), and A(perpendicular) approximately 68 x 10(-4) cm(-1). In contrast isotropic room-temperature solution spectra of the family have 15 hyperfine lines (g(iso) approximately 1.974 and A(iso) approximately 50 x 10(-4) cm(-1)) revealing that the unpaired electron is delocalized between the metal centers. Crystal data for the [V2O3L1].CH2Cl2 complex are as follows: chemical formula, C32H43O6N4Cl2V2; crystal system, monoclinic; space group, C2/c; a = 18.461(4), b = 17.230(3), c = 13.700(3) A; beta = 117.88(3) degrees ; Z = 8.  相似文献   

7.
In this study, novel quinazolinones were designed, synthesized, characterized by FT-IR, 1H-NMR, 13C-NMR spectral data, and LC–MS. New compounds inhibitory activities on urease were assessed. All of the compounds exhibited potent urease inhibitory activities. Especially in the synthesized compounds, 2-benzyl-3-({5-[(4-nitrophenyl)amino]-1,3,4-thiadiazol2-yl}methyl)quinazolin-4(3H)-one has the best inhibitory effect against Jack bean urease with IC50 = 3.30 ± 0.09 μg/mL. And also, N-(4-nitrophenyl)-2-[(4-oxoquinazolin-3(4H)-yl)acetyl] hydrazinecarbothioamide, N-(4-fluorophenyl)-2-[(4-oxoquinazolin-3(4H)-yl)acetyl] hydrazinecarbothioamide, and 2-benzyl-3-({5-[(4-fluorophenyl)amino]-1,3,4-thiadiazol-2yl} methyl)quinazolin-4(3H)-one have best activities among the synthesized compounds.  相似文献   

8.
The synthesis and characterization of two neutrally charged bimetallic Ni(II) ethylene polymerization catalysts, {2,7-di-[2,6-(3,5-di-methylphenylimino)methyl]1,8-naphthalenediolato}-bis-Ni(II) (methyl)(trimethylphosphine) [(CH(3) )FI(2) -Ni(2) ] and {2,7-di-[2,6-(3,5-di-trifluoromethyl-phenylimino)methyl]-1,8-naphthalenediolato}-bis-Ni(II) (methyl)(trimethyl-phosphine) [(CF(3) )FI(2) -Ni(2) )], are reported. The diffraction-derived molecular structure of (CF(3) )FI(2) -Ni(2) reveals a Ni???Ni distance of 5.8024(5)??. In the presence of ethylene and Ni(COD)(2) or B(C(6) F(5) )(3) co-catalysts, these complexes along with their monometallic analogues [2-tert-butyl-6-((2,6-(3,5-dimethylphenyl)phenylimino)methyl)-phenolate]-Ni(II) -methyl(trimethylphosphine) [(CH(3) )FI-Ni] and [2-tert-butyl-6-((2,6-(3,5-ditrifluoromethyl-phenyl)phenylimino)methyl)phenolato]-Ni(II) -methyl-(trimethylphosphine) [(CF(3) )FI-Ni], produce polyethylenes ranging from highly branched M(w) =1400 oligomers (91?methyl branches per 1000?C) to low branch density M(w) =92?000 polyethylenes (7?methyl branches per 1000?C). In the bimetallic catalysts, Ni???Ni cooperative effects are evidenced by increased product polyethylene branching in ethylene homopolymerizations (~3× for (CF(3) )FI(2) -Ni(2) vs. monometallic (CF(3) )FI-Ni), as well as by enhanced norbornene co-monomer incorporation selectivity, with bimetallic (CH(3) )FI(2) -Ni(2) and (CF(3) )FI(2) -Ni(2) enchaining approximately three- and six-times more norbornene, respectively, than monometallic (CH(3) )FI-Ni and (CF(3) )FI-Ni. Additionally, (CH(3) )FI(2) -Ni(2) and (CF(3) )FI(2) -Ni(2) exhibit significantly enhanced thermal stability versus the less sterically encumbered dinickel catalyst {2,7-di-[(2,6-diisopropylphenyl)imino]-1,8-naphthalenediolato}-bis-Ni(II) (methyl)(trimethylphosphine). The pathway for bimetallic catalyst thermal deactivation is shown to involve an unexpected polymerization-active intermediate, {2,7-di-[2,6-(3,5-di-trifluoromethyl-phenylimino)methyl]-1-hydroxy,8-naphthalenediolato-Ni(II) (methyl)-(trimethylphosphine).  相似文献   

9.
A series of novel complexes of the type Cu(II)(Ln)2(H2O)2]xH2O [where Ln = L 1–4 , these ligands being described as: L 1 , 2‐({4‐[6,7‐dihydrothieno[3,2‐c]pyridin‐5(4H)‐ylsulfonyl]phenylimino}methyl)phenol, x = 1; L 2 , 2‐({4‐[6,7‐dihydrothieno[3,2‐c] pyridin‐5(4H)‐ylsulfonyl]phenylimino}methyl)‐5‐(methoxy)phenol, x = 2; L 3 , 5‐chloro‐2‐({4‐[6,7‐dihydrothieno[3,2‐c]pyridin‐5(4H)‐ylsulfonyl]phenylimino}methyl)phenol, x = 2; and L 4 , 5‐bromo‐4‐chloro‐2‐({4‐[6,7‐dihydrothieno[3,2‐c]pyridin‐5(4H)‐ylsulfonyl]phenylimino} methyl)phenol, x = 1] was investigated. They were characterized by elemental analysis, IR, 1H‐NMR, 13C‐NMR and electronic spectra, magnetic measurements and thermal studies. The FAB‐mass spectrum of [Cu(II)( L 1 )2(H2O)2]H2O was determined. A magnetic moment and reflectance spectral study revealed that an octahedral geometry could be assigned to all the prepared complexes. Ligands (Ln) and their metal complexes were screened for their in vitro antibacterial activity against Bacillus subtillis, Pseudomonas aeruginosa, Escherichia coli and Serratia marcescens bacterial strains. Kinetic parameters such as order of reaction (n), the energy of activation (Ea), the pre‐exponential factor (A), the activation entropy (ΔS), the activation enthalpy (ΔH) and the free energy of activation (ΔG) are reported. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Novel monomeric benzyl- and aryl-gold(I) triphenylphosphine complexes have been prepared. Pure, uncomplexed 2-[(dimethylamino)methyl]-phenylgold(I) has been isolated from the reaction of tetranuclear bis {2-[(dimethylamino)methyl]phenyl}goldlithium (R4 Au2 Li2) with trimethyltin bromide.  相似文献   

11.
Two new N2O2 unsymmetrical Schiff bases, H2L1 = 3-[({o-[(E)-(o-hydroxyphenyl)methylideneamino]phenyl}methyl)imino]-1-phenyl-1-buten-1-ol and H2L2 = 3-[({o-[(E)-(2-hydroxy-1-naphthyl)methylideneamino]phenyl}methyl)imino]-1-phenyl-1-buten-1-ol, and their copper(II) and nickel(II) complexes, [CuL1] (1), [CuL2] (2), [NiL1] (3), and [NiL2] (4), have been synthesized and characterized by elemental analyses and spectroscopic methods. The crystal structures of these complexes have been determined by X-ray diffraction. The coordination geometry around Cu(II) and Ni(II) centers is described as distorted square planar in all complexes with the CuN2O2 coordination more distorted than the Ni ones. The electrochemical studies of these complexes indicate a good correlation between the structural distortion and the redox potentials of the metal centers. The ligand and metal complexes were also screened for their in vitro antibacterial activity.  相似文献   

12.
The thioethers (4-tert-butyl-2,6-bis((2-(diphenylphosphino)ethylimino)methyl)phenyl)(tert-butyl)sulfane (tBuL3) and (4-tert-butyl-2,6-bis((2-(diphenylphosphino)ethylamino)methyl)phenyl)(tert-butyl)sulfane (tBuL4) react readily with [Pd(NCMe)2Cl2] to give the dinuclear palladium thiophenolate complexes [(L3)Pd2(Cl)2]+ and [(L4)Pd2(micro-Cl)]2+ (HL3=2,6-bis((2-(diphenylphosphino)ethylimino)methyl)-4-tert-butylbenzenethiol, HL4=2,6-bis((2-(diphenylphosphino)ethylamino)methyl)-4-tert-butylbenzenethiol). The chlorides in could be replaced by neutral (MeCN) and anionic ligands (NCS-, N3-, I-, CN-) to give the dinuclear PdII complexes [(L3)Pd2(NCMe)2]3+, [(L3)Pd2(SCN)2]+, [(L3)Pd2(N3)2]+, [(L3)Pd2(I)2]+, and [(L3)Pd2(CN)2]+. The acetonitrile ligands in are readily hydrated to give the corresponding amidato complex [(L3)Pd2(NHCOMe)]2+. All complexes were isolated as perchlorate salts and studied by infrared, 1H, and 31P NMR spectroscopy. In addition, complexes [ClO4].EtOH, [ClO4]2, [ClO4], [ClO4].EtOH, and [ClO4]2.MeCN.MeOH have been characterized by X-ray crystallography. The dipalladium complex was found to catalyse the vinyl-addition polymerization of norbornene in the presence of MAO (methylalumoxane) and B(C6F5)3/AlEt3.  相似文献   

13.
Preparation of pentadentate ligands L1, L2, L3 and L4, where L1 = 4-chloro-3-methyl-2[(prolin-1-yl)methyl]-6-[N-phenyl piperazin-1-yl)methyl]phenol, L2 = 4-ethyl-2-[(prolin-1-yl)methyl]-6-[(N-phenyl piperazin-1-yl)methyl]phenol, L3 = 4-chloro-3-methyl-2-[(prolin-1-yl)methyl]-6-[N-methyl piperazin-1-yl]methyl phenol, L4 = 4-methoxy-2-[(prolin-1-yl)methyl]-6-[(N-phenyl piperazin-1-yl)methyl]phenol is described together with that of the corresponding Cu(II) complexes with various bridging motifs like OH, OAc and NO2. The complexes are characterized by elemental analysis, electrochemical and electron paramagnetic spectral studies. Redox properties of the complexes in acetonitrile are highly quasireversible due to the chemical or/and stereochemical changes subsequent to electron transfer. The complexes show resolved copper hyperfine EPR at room temperature, indicating the presence of weak antiferromagnetic coupling between the copper atoms. Strengths of the antiferromagnetic interactions are in the order NO2>OAc>OH.  相似文献   

14.
《Polyhedron》1999,18(8-9):1355-1362
New symmetrical 2,6-bis{N-[2-(2-benzimidazolyl)-phenyl]iminomethyl}-4-methylphenol (L1) and unsymmetrical 2-N-[2-(2-benzimidazoyl)phenyl]iminomethyl-6-[(4-methylpiperazin-1-yl)-methyl]-4-methylphenol (L2) binucleating ligands have been synthesized. Complexation of these ligands with Cu(II) perchlorate and appropriate sodium salt offered the binuclear copper(II) complexes, [Cu2L(X)](ClO4)2, (X=Cl, OH and OAc 1–6). Their spectral, electrochemical and magnetic properties have been studied. Two distinct reduction peaks were observed at negative potentials. The electrochemical data shows that the complexes of L2 undergo reduction at less negative potential (E1pc=−0.15 to −0.25 V, E2pc=−0.45 to −0.65 V) when compared to the complexes of L1 (E1pc=−0.45 to −0.58 V, E2pc=−1.07 to −1.103 V). A variable temperature magnetic study on the complexes of the ligand L1 showed strong antiferromagnetic coupling between the copper atoms (−2J=285–295 cm−1), in contrast, the complexes of the ligand L2 showed weak antiferromagnetic interaction (−2J=60–85 cm−1). Electron spin resonance (ESR) spectra (RT) of the complexes of ligand L1 showed no signal and the complexes of ligand L2 showed a broad feature.  相似文献   

15.
The synthesis and characterization of two new dinuclear nickel(II) complexes, namely bis{μ‐3‐[2‐(dimethylamino)ethylimino]butan‐2‐one oximato}dinickel(II) bis(perchlorate) acetonitrile solvate, [Ni2(C8H16N3O)2](ClO4)2·CH3CN, (I), and bis{μ‐3‐[2‐(dimethylamino)ethylimino]‐3‐phenylpropan‐2‐one oximato}dinickel(II) bis(perchlorate), [Ni2(C13H18N3O)2](ClO4)2, (II), are reported. Single‐crystal X‐ray analyses of the complexes reveal that the nickel(II) ions are in square‐planar N3O environments and form six‐membered (NiNO)2 metallacycles. The cation in (II) possesses crystallographically imposed inversion symmetry.  相似文献   

16.
Two mononuclear complexes with the Schiff base ligand 2-((2-(dimethylamino)ethylimino)methyl)phenol (HL), namely ZnL2 and CoL2(N3), have been synthesized and characterized using single-crystal X-ray diffraction and spectroscopy (IR, 1H NMR, UV–Vis, MS and EA). Both complexes are mononuclear. The coordination geometry in the Zn(II) complex is distorted square-pyramidal with a weak Zn···N interaction. The Co(III) complex is distorted octahedral, and the neutral molecule unit [CoIIIL2(N3)] is connected by C–H···N hydrogen bonds to form a one-dimensional infinite chain. The luminescence of the zinc compound has been investigated. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Reactions of hydrated zinc(II) trifluoroacetate and sodium azide with two tridentate Schiff bases HL1 (2-((E)-(2-(dimethylamino)ethylimino)methyl)-4-chlorophenol) and HL2 (2-((E)-(2-(dimethylamino)ethylimino)methyl)-4-bromophenol) under the same reaction conditions yielded two dinuclear isostructural zinc(II) complexes, [Zn(L1)(N3)]2 (1) and [Zn(L2)(N3)]2 (2), respectively. The complexes were characterized systematically by elemental analysis, UV–Vis, FT-IR, and 1H NMR spectroscopic methods. Single-crystal X-ray diffraction studies reveal that each of the dinuclear complexes consists of two crystallographically independent zinc(II) ions connected by double bridging phenoxides. All zinc(II) ions in 1 and 2 are surrounded by similar donor sets and display distorted square–pyramidal coordination geometries. The ligands and complexes reveal intraligand 1(π → π*) flourescence. The enhancement of the fluorescence intensities for the complexes compared to the ligands indicates their potential to serve as photoactive materials.  相似文献   

18.
The template reaction of {bis[(S)-2-(aminomethyl)pyrrolidine]}copper(II) with formaldehyde, nitroethane, and base in MeOH yields optically pure {1,7-bis[(S)-pyrrolidin-2-yl]-4-methyl-4-nitro-2,6-diazaheptane}- copper(II) ([Cu((S,S)-mnppm)]2+) in high yield. The same reaction with rac-2-(aminomethyl)pyrrolidine is also described. Preparative details and spectroscopic and electrochemical properties of the CuII complexes and of the free ligands are reported and compared with structural, spectroscopic and electrochemical data of the CuII complex of the unsubstituted parent ligand 1,7-bis[(S)-pyrrolidin-2-yl]-2,6-diazaheptane (ppm). The crystal structure of [Cu(ppm)]Cl ClO4 has been determined by X-ray diffraction methods.  相似文献   

19.
σ-Bond metathesis reactions between [(6-Dipp)CuOtBu] (6-Dipp=:C({Dipp}NCH2)2CH2, Dipp=2,6-iPr2−C6H3) and three diboranes gave access to three new copper(I) boryl complexes [(6-Dipp)CuBcat], [(6-Dipp)CuBneop], and [(6-Dipp)CuBhex] (cat=1,2-O2C6H4; neop=(OCH2)2C(CH3)2; hex=OC(CH3)HCH2C(CH3)2O). Whilst [(6-Dipp)CuBcat] and [(6-Dipp)CuBneop] formed rapidly in toluene, access to [(6-Dipp)CuBhex] required heating to 60 °C for days. The complexes were characterised by single-crystal X-ray crystallography which showed in all three cases that the systems were monomers and distorted-linear at the copper atom. The stability of [(6-Dipp)CuBneop] was found to be comparable to that of [(IPr*)Cu-Bneop] (IPr*=1,3-bis(2,6-(diphenylmethyl)-4-methylphenyl)imidazol-2-ylidene); it persisted in solution for days with no sign of decomposition. [(6-Dipp)CuBhex] is a rare crystallographically characterised example of a complex containing a boryl anion supported by the hexylene glycolato ligand.  相似文献   

20.
Chelates of the type M(L)2 {where, M ?= ?Co(II), Ni(II) and Cu(II), and L ?= ?3-{(E)-[(2-hydroxy-3-methoxyphenyl)methylidene]amino}pyridin-4(1H)-one)} were synthesized by using the Schiff base ligand in the stochiometric ratio 2:1 (L:M) and Schiff base ligand (L) was synthesized by simple condensation between 2-hydroxy-3-methoxybenzaldehyde with 3-aminopyridin-4-ol. The structure and formation of synthesized compounds were established by different analytical and spectroscopic methods like, elemental analysis, UV- spectroscopy, FT-IR, Proton and Carbon NMR, mass spectrometry and Powder XRD. Further, the synthesized chelates screened for the DNA binding studies of Calf Thymus (CT)-DNA by exploiting electronic absorption spectra, relative viscosity measurements and thermal denaturation methods. The proposed DNA binding mode supports the enhancement in the binding activity of the complexes in presence of newly synthesized ligand. The cleavage activities of the PUC-18 DNA in the presence and the absence of the complexes were recorded with the help of gel-electrophoresis. The cleavage experiment results reveals that all the synthesized chelates can cleave pUC-18 DNA effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号