首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This paper concerns a numerical solution for the diffusion equation on the unit sphere. The given method is based on the spherical basis function approximation and the Petrov–Galerkin test discretization. The method is meshless because spherical triangulation is not required neither for approximation nor for numerical integration. This feature is achieved through the spherical basis function approximation and the use of local weak forms instead of a global variational formulation. The local Petrov–Galerkin formulation allows to compute the integrals on small independent spherical caps without any dependence on a connected background mesh. Experimental results show the accuracy and the efficiency of the new method.  相似文献   

2.
We introduce the concept of fast wavelet‐Taylor Galerkin methods for the numerical solution of partial differential equations. In wavelet‐Taylor Galerkin method discretization in time is performed before the wavelet based spatial approximation by introducing accurate generalizations of the standard Euler, θ and leap‐frog time‐stepping scheme with the help of Taylor series expansions in the time step. We will present two different time‐accurate wavelet schemes to solve the PDEs. First, numerical schemes taking advantage of the wavelet bases capabilities to compress the operators and sparse representation of functions which are smooth, except for in localized regions, up to any given accuracy are presented. Here numerical experiments deal with advection equation with the spiky solution in one dimension, two dimensions, and nonlinear equation with a shock in solution in two dimensions. Second, our schemes deal with more regular class of problems where wavelets are not efficient procedure for data compression but we can use the good approximation properties of wavelet. Here time‐accurate schemes lead to consistent mass matrix in an explicit time stepping, which can be solved by approximate factorization techniques. Numerical experiment deals with more regular class of problems like heat equation as well as coupled linear system in two dimensions. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

3.
In this work we consider the reaction‐diffusion system of FitzHugh‐Nagumo type describing the behavior of the electrical conduction in an anisotropic cardiac muscle. The analysis of the Galerkin semidiscrete space approximation to this system is approached by means of a suitable variational formulation in the framework of abstract degenerate evolution equations. The main results concern convergence analysis and a priori stability estimates for the semidiscrete solution. These abstract results are then applied to the cardiac problem and for the finite element Galerkin approximation we achieve optimal order convergence. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 218–240, 2002; DOI 10.1002/num.1000  相似文献   

4.
Isogeometric analysis (IGA), in combination with the streamline upwind Petrov–Galerkin (SUPG) stabilization, is studied for the discretization of steady-state convection–diffusion equations. Numerical results obtained for the Hemker problem are compared with results computed with the SUPG finite element method of the same order. Using an appropriate parameterization for IGA, the computed solutions are much more accurate than those obtained with the finite element method, both in terms of the size of spurious oscillations and of the sharpness of layers.  相似文献   

5.
In this article, we introduce and analyze a weak Galerkin finite element method for numerically solving the coupling of fluid flow with porous media flow. Flows are governed by the Stokes equations in primal velocity‐pressure formulation and Darcy equation in the second order primary formulation, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers‐Joseph‐Saffman law. By using the weak Galerkin approach, we consider the two‐dimensional problem with the piecewise constant elements for approximations of the velocity, pressure, and hydraulic head. Stability and optimal error estimates are obtained. Finally, we provide several numerical results illustrating the good performance of the proposed scheme and confirming the optimal order of convergence provided by the weak Galerkin approximation. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1352–1373, 2017  相似文献   

6.
Continuous Galerkin formulations are appealing due to their low computational cost, whereas discontinuous Galerkin formulation facilitate adaptative mesh refinement and are more accurate in regions with jumps of physical parameters. Since many electromagnetic problems involve materials with different physical properties, this last point is very important. For this reason, in this article we have developed a combined cG-dG formulation for Maxwell’s problem that allows arbitrary finite element spaces with functions continuous in patches of finite elements and discontinuous on the interfaces of these patches. In particular, the second formulation we propose comes from a novel continuous Galerkin formulation that reduces the amount of stabilization introduced in the numerical system. In all cases, we have performed stability and convergence analyses of the methods. The outcome of this work is a new approach that keeps the low CPU cost of recent nodal continuous formulations with the ability to deal with coefficient jumps and adaptivity of discontinuous ones. All these methods have been tested using a problem with singular solution and another one with different materials, in order to prove that in fact the resulting formulations can properly deal with these problems.  相似文献   

7.
We study nonlocal equations from the area of peridynamics, an instance of nonlocal wave equation, and nonlocal diffusion on bounded domains whose governing equations contain a convolution operator based on integrals. We generalize the notion of convolution to accommodate local boundary conditions. On a bounded domain, the classical operator with local boundary conditions has a purely discrete spectrum, and hence, provides a Hilbert basis. We define an abstract convolution operator using this Hilbert basis, thereby automatically satisfying local boundary conditions. The main goal in this paper is twofold: apply the concept of abstract convolution operator to nonlocal problems and carry out a numerical study of the resulting operators. We study the corresponding initial value problems with prominent boundary conditions such as periodic, antiperiodic, Neumann, and Dirichlet. To connect to the standard convolution, we give an integral representation of the abstract convolution operator. For discretization, we use a weak formulation based on a Galerkin projection and use piecewise polynomials on each element which allows discontinuities of the approximate solution at the element borders. We study convergence order of solutions with respect to polynomial order and observe optimal convergence. We depict the solutions for each boundary condition.  相似文献   

8.
In this work, we use the spectral Galerkin method to prove the existence of a pathwise unique mild solution of a fractional stochastic partial differential equation of Burgers type in a Hölder space. We get the temporal regularity, and using a combination of Galerkin and exponential‐Euler methods, we obtain a full discretization scheme of the solution. Moreover, we calculate the rates of convergence for both approximations (Galerkin and full discretization) with respect to time and to space.  相似文献   

9.

The subject of the paper is the analysis of three new evolution Galerkin schemes for a system of hyperbolic equations, and particularly for the wave equation system. The aim is to construct methods which take into account all of the infinitely many directions of propagation of bicharacteristics. The main idea of the evolution Galerkin methods is the following: the initial function is evolved using the characteristic cone and then projected onto a finite element space. A numerical comparison is given of the new methods with already existing methods, both those based on the use of bicharacteristics as well as commonly used finite difference and finite volume methods. We discuss the stability properties of the schemes and derive error estimates.

  相似文献   


10.
In this article we analyze the well‐posedness (unique solvability, stability, and Céa's estimate) of a family of Galerkin schemes for the coupling of fluid flow with porous media flow. Flows are governed by the Stokes and Darcy equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers—Joseph—Saffman law. We consider the usual primal formulation in the Stokes domain and the dual‐mixed one in the Darcy region, which yields a compact perturbation of an invertible mapping as the resulting operator equation. We then apply a classical result on projection methods for Fredholm operators of index zero to show that use of any pair of stable Stokes and Darcy elements implies the well‐posedness of the corresponding Stokes—Darcy Galerkin scheme. This extends previous results showing well‐posedness only for Bernardi—Raugel and Raviart—Thomas elements. In addition, we show that under somewhat more demanding hypotheses, an alternative approach that makes no use of compactness arguments can also be applied. Finally, we provide several numerical results illustrating the good performance of the Galerkin method for different geometries of the problem using the MINI element and the Raviart—Thomas subspace of lowest order. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 721–748, 2011  相似文献   

11.
In this paper, we introduce numerical schemes and their analysis based on weak Galerkin finite element framework for solving 2‐D reaction–diffusion systems. Weak Galerkin finite element method (WGFEM) for partial differential equations relies on the concept of weak functions and weak gradients, in which differential operators are approximated by weak forms through the Green's theorem. This method allows the use of totally discontinuous functions in the approximation space. In the current work, the WGFEM solves reaction–diffusion systems to find unknown concentrations (u, v) in element interiors and boundaries in the weak Galerkin finite element space WG(P0, P0, RT0) . The WGFEM is used to approximate the spatial variables and the time discretization is made by the backward Euler method. For reaction–diffusion systems, stability analysis and error bounds for semi‐discrete and fully discrete schemes are proved. Accuracy and efficiency of the proposed method successfully tested on several numerical examples and obtained results satisfy the well‐known result that for small values of diffusion coefficient, the steady state solution converges to equilibrium point. Acquired numerical results asserted the efficiency of the proposed scheme.  相似文献   

12.
In this paper, we propose a wavelet-Taylor Galerkin method for the numerical solution of the Burgers equation. In deriving the computational scheme, Taylor-generalized Euler time discretization is performed prior to wavelet-based Galerkin spatial approximation. The linear system of equations obtained in the process are solved by approximate-factorization-based simple explicit schemes, and the resulting solution is compared with that from regular methods. To deal with transient advection-diffusion situations that evolve toward a convective steady state, a splitting-up strategy is known to be very effective. So the Burgers equation is also solved by a splitting-up method using a wavelet-Taylor Galerkin approach. Here, the advection and diffusion terms in the Burgers equation are separated, and the solution is computed in two phases by appropriate wavelet-Taylor Galerkin schemes. Asymptotic stability of all the proposed schemes is verified, and the L errors relative to the analytical solution together with the numerical solution are reported. AMS subject classification (2000) 65M70  相似文献   

13.
14.
Explicit numerical finite difference schemes for partial differential equations are well known to be easy to implement but they are particularly problematic for solving equations whose solutions admit shocks, blowups, and discontinuities. Here we present an explicit numerical scheme for solving nonlinear advection–diffusion equations admitting shock solutions that is both easy to implement and stable. The numerical scheme is obtained by considering the continuum limit of a discrete time and space stochastic process for nonlinear advection–diffusion. The stochastic process is well posed and this guarantees the stability of the scheme. Several examples are provided to highlight the importance of the formulation of the stochastic process in obtaining a stable and accurate numerical scheme.  相似文献   

15.
Application of the wavelet Galerkin method (WGM) to numerical solution of nonlinear buckling problems was studied with classical elastic thin rectangular plates. First, the discretized scheme of the von Kármán equation were introduced, then a simple calculation approach to the Jacobian and Hessian matrices based on the WGM was proposed, and the wavelet discretized scheme-based eigenvalue equation method, the extended equation method and the pseudo arc-length method for nonlinear buckling analysis were discussed. Second, the secondary post-buckling equilibrium paths of elastic thin rectangular plates and the effects of aspect ratios, boundary conditions and bi-directional compression on the mode jumping behaviors, were discussed in detail. Numerical results show that, the WGM possesses good convergence for solving buckling loads on rectangular plates, and the obtained equilibrium paths are in good agreement with those from the stability experiments, the 2-step perturbation method and the nonlinear finite element method. Given the feasibility of combination with different bifurcation computation methods, the WGM makes an efficient spatial discretization method for complex nonlinear stability problems of typical plates and shells. © 2023 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

16.
We lay out a program for constructing discontinuous Petrov–Galerkin (DPG) schemes having test function spaces that are automatically computable to guarantee stability. Given a trial space, a DPG discretization using its optimal test space counterpart inherits stability from the well posedness of the undiscretized problem. Although the question of stable test space choice had attracted the attention of many previous authors, the novelty in our approach lies in the fact we identify a discontinuous Galerkin (DG) framework wherein test functions, arbitrarily close to the optimal ones, can be locally computed. The idea is presented abstractly and its feasibility illustrated through several theoretical and numerical examples. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

17.
A Galerkin projection scheme to obtain low dimensional approximations of delay differential equations (DDEs) involving state-dependent delays is developed. The current scheme is an extension of a similar, recently proposed scheme for DDEs with constant delays in the publication by P. Wahi, A. Chatterjee 2005. The resulting ordinary differential equations (ODEs) from the Galerkin scheme are easier to integrate using commercial ODE solvers, and are amenable to stability and bifurcation analysis using standard techniques. First, the application of the formulation is demonstrated through a scalar delay differential equation, and the performance of the formulation is assessed. Next, the scheme is applied to a two degrees-of-freedom model describing the coupled axial and torsional vibrations of oil well drill-strings. In both cases, the Galerkin approximations show an excellent agreements with the direct numerical simulations of the original systems.  相似文献   

18.
《Applied Mathematical Modelling》2014,38(5-6):1612-1621
Nonlinear reaction–diffusion systems are often employed in mathematical modeling for pattern formation. Most of the work to date has been concerned within one-dimensional or rectangular domains. However, it is recognised that in most applications multidimensional complex geometrical domains are typically more important. In this paper we solve reaction–diffusion systems by combining direct discontinuous Galerkin (DDG) finite element methods with implicit integration factor (IIF) time integration method, on triangular meshes. This allows us solve the nonlinear algebraic systems on an element-by-element bases with significant gains in computational time. Numerical solutions of two reaction–diffusion systems, the well-studied Schnakenberg model and chloride–iodide–malonic acid (CIMA) reactive model, are presented to demonstrate effects of various domain geometries on the resulting biological patterns. Our numerical results are in good agreement with other numerical and analytical results, and with experimental results.  相似文献   

19.
In this article, we employ trigonometric wavelet bases to numerical solution of Fredholm integral equations of first kind in Holder space. Employment of Galerkin method for trigonometric wavelets in Fredholm integral equations of first kind has resulted in occurrence of two-dimensional trigonometric wavelets. Here, we present the convergence of two-dimensional trigonometric wavelets in numerical solution in Holder space C α([a, b]).  相似文献   

20.
This article deals with moving finite element methods by use of the time-discontinuous Galerkin formulation in combination with oriented space–time meshes. A principle for mesh orientation in space–time based on minimization of the residual, related to adaptive error control via an a posteriori error estimate, is presented. The relation to Miller's moving finite element method is discussed. The article deals with scalar problems; systems will be treated in a companion article. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14:251–262, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号