首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
研究了聚氧乙烯(PEO)与SiO2纳米颗粒对水/二甲苯体系Pickering乳液的协同稳定作用. 实验发现,PEO的存在减小了乳液液滴的平均直径,抑制了乳液的相反转,有效阻止了乳液的熟化,使乳液具有更好的稳定性. 进一步对纳米颗粒膜的流变性质进行研究,结果表明,PEO高分子促进了纳米颗粒形成更大尺寸的聚集结构,提高了其在界面上的吸附性,增强了颗粒膜的力学性能,在较小颗粒用量条件下使得Gibbs稳定性判据得到满足.  相似文献   

2.
Surface‐inactive, highly hydrophilic particles are utilized to effectively and reversibly stabilize oil‐in‐water emulsions. This is a result of attractive van der Waals forces between particles and oil droplets in water, which are sufficient to trap the particles in close proximity to oil–water interfaces when repulsive forces between particles and oil droplets are suppressed. The emulsifying efficiency of the highly hydrophilic particles is determined by van der Waals attraction between particle monolayer shells and oil droplets enclosed therein and is inversely proportional to the particle size, while their stabilizing efficiency is determined by van der Waals attraction between single particles and oil droplets, which is proportional to the particle size. This differentiation in mechanism between emulsification and stabilization will significantly advance our knowledge of emulsions, thus enabling better control and design of emulsion‐based technologies in practice.  相似文献   

3.
Surface‐inactive, highly hydrophilic particles are utilized to effectively and reversibly stabilize oil‐in‐water emulsions. This is a result of attractive van der Waals forces between particles and oil droplets in water, which are sufficient to trap the particles in close proximity to oil–water interfaces when repulsive forces between particles and oil droplets are suppressed. The emulsifying efficiency of the highly hydrophilic particles is determined by van der Waals attraction between particle monolayer shells and oil droplets enclosed therein and is inversely proportional to the particle size, while their stabilizing efficiency is determined by van der Waals attraction between single particles and oil droplets, which is proportional to the particle size. This differentiation in mechanism between emulsification and stabilization will significantly advance our knowledge of emulsions, thus enabling better control and design of emulsion‐based technologies in practice.  相似文献   

4.
A procedure to obtain hollow colloidal particles has been developed using an emulsion templating technique. Monodisperse silicone oil droplets were prepared by hydrolysis and polymerization of dimethyldiethoxysilane monomer and incorporated in a solid shell using tetraethoxysilane. Hollow shells were obtained by exchange of the core. The formation of the oil droplets was investigated using static light scattering and 29Si solution NMR, and the hollow shells were characterized by electron microscopy and static light scattering. Details on the composition of the shell material were obtained from energy-dispersive X-ray analysis and 29Si solid state NMR, revealing that the shells consist of a hybrid cross-linked network of silica and siloxane units. Confocal microscopy was used to show that the shells are permeable to small dye molecules. The thickness of the coating can be easily varied from a few nanometers upward. Depending on the ratio of shell thickness to particle radius, three types of hollow shells can be distinguished depending on the way in which they buckle upon drying. We designate them as microspheres, microcapsules, and microballoons. As a result of their monodispersity, these particles can be used for making 3D-ordered materials.  相似文献   

5.
We developed a process to fabricate 150-700 nm monodisperse polymer particles with 100-500 nm hollow cores. These hollow particles were fabricated via dispersion polymerization to synthesize a polymer shell around monodisperse SiO(2) particles. The SiO(2) cores were then removed by HF etching to produce monodisperse hollow polymeric particle shells. The hollow core size and the polymer shell thickness, can be easily varied over significant size ranges. These hollow polymeric particles are sufficiently monodisperse that upon centrifugation from ethanol they form well-ordered close-packed colloidal crystals that diffract light. After the surfaces are functionalized with sulfonates, these particles self-assemble into crystalline colloidal arrays in deionized water. This synthetic method can also be used to create monodisperse particles with complex and unusual morphologies. For example, we synthesized hollow particles containing two concentric-independent, spherical polymer shells, and hollow silica particles which contain a central spherical silica core. In addition, these hollow spheres can be used as template microreactors. For example, we were able to fabricate monodisperse polymer spheres containing high concentrations of magnetic nanospheres formed by direct precipitation within the hollow cores.  相似文献   

6.
We demonstrate the use of vapor phase deposition to completely encapsulate ionic liquid (IL) droplets within robust polymer shells. The IL droplets were first rolled into liquid marbles using poly(tetrafluoroethylene) (PTFE) particles because the marble structure facilitates polymerization onto the entire surface area of the IL. Polymer shells composed of 1H,1H,2H,2H-perfluorodecyl acrylate cross-linked with ethylene glycol diacrylate (P(PFDA-co-EGDA)) were found to be stronger than the respective homopolymers. Fourier transform infrared spectroscopy showed that the PTFE particles become incorporated into the polymer shells. The integration of the particles increased the rigidity of the polymer shells and enabled the pure IL to be recovered or replaced with other fluids. Our encapsulation technique can be used to form polymer shells onto dozens of droplets at once and can be extended to encapsulate any low vapor pressure liquid that is stable under vacuum conditions.  相似文献   

7.
In this study the potential ability of food-grade particles (at the droplet interface) to enhance the oxidative stability was investigated. Sunflower oil-in-water emulsions (20%), stabilised solely by food-grade particles (Microcrystalline cellulose (MCC) and modified starch (MS)), were produced under different processing conditions and their physicochemical properties were studied over time. Data on droplet size, surface charge, creaming index and oxidative stability were obtained. Increasing the food-grade particle concentration from 0.1% to 2.5% was found to decrease droplet size, enhance the physical stability of emulsions and reduce the lipid oxidation rate due to the formation of a thicker interfacial layer around the oil droplets. It was further shown that, MCC particles were able to reduce the lipid oxidation rate more effectively than MS particles. This was attributed to their ability to scavenge free radicals, through their negative charge, and form thicker interfacial layers around oil droplets due to the particles size differences. The present study demonstrates that the manipulation of emulsions' interfacial microstructure, based on the formation of a thick interface around the oil droplets by food-grade particles (Pickering emulsions), is an effective approach to slow down lipid oxidation.  相似文献   

8.
In this paper, the influence of rubber particle size on the phase interface in dynamically vulcanized poly(vinylidene fluoride)/silicone rubber (PVDF/SR) blends without any modifier is discussed through the studies of specific surface of crosslinked SR particles, crystallization behavior and crystal morphology of the PVDF phase, interfacial crystallization, melt rheological behavior and mechanical properties of blends. A series of decreased average particle size was successfully obtained by control of rotor rate. It was found that properly high rotor rate helped to achieve a reduced particle size and a narrowing size distribution. The reduced SR particle size enlarged the PVDF/SR interface which has a positive effect on the interfacial crystallization and the melt rheological behavior. At high SR content, the negative effect of the poor interface interactions played the dominate role on determining the mechanical properties. However, the blend exhibited a unique stiffness-toughness balance at the PVDF/SR = 90/10. We hope that the present study could help to lay a scientific foundation for further design of a useful PVDF/SR blend with promoted properties to partly replace the high-cost synthetic fluorosilicone materials.  相似文献   

9.
Recent experiments and simulations have demonstrated that particle-covered fluid/fluid interfaces can exist in stable nonspherical shapes as a result of the steric jamming of the interfacially trapped particles. The jamming confers the interface with solidlike properties. We provide an experimental and theoretical characterization of the mechanical properties of these armored objects, with attention given to the two-dimensional granular state of the interface. Small inhomogeneous stresses produce a plastic response, while homogeneous stresses produce a weak elastic response. Shear-driven particle-scale rearrangements explain the basic threshold needed to obtain the near-perfect plastic deformation that is observed. Furthermore, the inhomogeneous stress state of the interface is exhibited experimentally by using surfactants to destabilize the particles on the surface. Since the interfacially trapped particles retain their individual characteristics, armored interfaces can be recognized as a kind of composite material with distinct chemical, structural, and mechanical properties.  相似文献   

10.
The mechanical response of particle-laden fluid interfaces is determined by measuring the internal pressures of particle-coated drops as a function of the drop volume. The particle monolayers undergoing compression-expansion cycles exhibit three distinct states: fluid state, jammed state, and buckled state. The P-V curves are compared to the surface pressure isotherms Pi-A that are measured using a Langmuir trough and a Wilhelmy plate on a flat water-decane interface covered with the same particles. We find that in the fluid and jammed states, the water drop in decane can be described by the Young-Laplace equation. Therefore in these relatively low compression states, the bulk pressure measurements can be used to deduce the interfacial tension of the droplets and yield similar surface pressure isotherms to the ones measured with the Wilhelmy plate. In the buckled state, the internal pressure of the drop yields a zero value, which is consistent with the zero interfacial tension measured with the Wilhelmy plate. Moreover we find that the compressibility in the jammed state does not depend on the particle size.  相似文献   

11.
Two-dimensional spherical crystalline colloidal structures are formed at the interface between water and oil as the result of spontaneous emulsification and colloidal self-assembly. When water droplets are introduced in oil containing a lipophilic surfactant, smaller water droplets of uniform size are spontaneously produced at the spherical interface. Initially of submicrometer size, the small droplets at the interface self-assemble, forming ordered structures, and grow uniformly with time until they reach a size of a few micrometers, maintaining the crystalline structure.  相似文献   

12.
Herein we offer a simple method to produce non-spherical emulsion droplets stabilized by freshly formed Mg(OH)(2) nanoparticles (MPs). The non-spherical degree of droplets as a function of experiment conditions was investiged and the origins of the presence of non-spherical droplets were discussed. The results of optical microscope images show that stable spherical droplets can be fused into non-spherical at given aging temperature. It is also recognized that particle concentration, oil/water ratio and aging time significantly affect droplet fusion and excess particles that are not adsorbed on the oil/water interface are helpful in restraining droplet fusion. Based on the TEM, XRD and Fluorescence confocal microscopy results, the origins of droplet fusion are inferred from the presence of vacant holes in the particle layer. Because of Oswald ripening, particles on droplet surfaces grow larger than the freshly precipitated ones under a given aging temperature. The growth of particles results in the reduction of total cover area of particle layer and thus creates vacant holes in the particle layer which would cause partial coalescence of droplets once they collide. Thus, these findings can offer a simple alternative to obtain a large amount of non-spherical emulsion droplets but also can help the preparation of non-spherical colloid particles.  相似文献   

13.
We have investigated the formation and evolution of zinc oxalate particles in internal aqueous droplets and their effects of emulsion interface properties. The formation of particles follows an aggregation-controlled mechanism that depends on the size of droplets and surfactant. The size of droplets determines the final shape of the particles by affecting the supersaturation ratio to form rod-like and sheet-like particles. The surfactant adsorbed on the particles changes the wettability, leading to the aggregation of the primary particles at the internal water-oil interface. Moreover, the adsorption can cause a higher level of impurity and defects in as-synthesized particles. This effect could be directly employed to fabricate heterojunction rectifier.  相似文献   

14.
The solid particles are adsorbed at interfaces and form self-assembled structures when the particles have suitable wettability to both liquids. Here, we show theoretically how the microstructure on the particle surface affects their adsorption properties. The physical properties of the interface adsorbing a particle will be described by taking into account the surface roughness due to the microstructure. The microstructure on the surface changes drastically the wettability and the equilibrium position of the adsorbed particle. Therefore, the contact angle of the particle at the three-phase contact line shifts with the particle surface area, because the surface roughness enhances the interfacial properties of the particle surface. Moreover, the range of the interfacial tensions at which the particle is adsorbed becomes narrower with the increase of the surface roughness. The effect of the particle shape on the adsorption properties is also studied. In the case of disk-shaped particles, the energy changes discontinuously when the plane surface of the particle contacts the liquid-liquid interface. The adsorbing position does not change with the surface roughness. The orientation of a parallelepiped particle at the liquid-liquid interface is governed by the aspect ratio and the surface area of the particle. On the other hand, the particle which is partially covered with the microstructured surface is adsorbed firmly at the interface in an oriented state. We should consider not only the interfacial tensions but also the surface structure and the particle shape to control the adsorption behavior of the particle.  相似文献   

15.
Microfluidic generation of multifunctional quantum dot barcode particles   总被引:1,自引:0,他引:1  
We develop a new strategy to prepare quantum dot (QD) barcode particles by polymerizing double-emulsion droplets prepared in capillary microfluidic devices. The resultant barcode particles are composed of stable QD-tagged core particles surrounded by hydrogel shells. These particles exhibit uniform spectral characteristics and excellent coding capability, as confirmed by photoluminescence analyses. By using double-emulsion droplets with two inner droplets of distinct phases as templates, we have also fabricated anisotropic magnetic barcode particles with two separate cores or with a Janus core. These particles enable optical encoding and magnetic separation, thus making them excellent functional barcode particles in biomedical applications.  相似文献   

16.
将N-异丙基丙烯酰胺(NIPAAm)引入小分子烃为模板的苯乙烯细乳液聚合法制备纳米胶囊的体系.水相引发形成的聚异丙基丙烯酰胺(PNIPAAm)低聚物自由基在聚合温度下(大于其最低临界溶解温度)析出并被苯乙烯细乳液液滴吸附,在热力学推动力和静电斥力的共同作用下,PNIPAAm低聚物倾向于分布在液滴和水的界面上,使液滴界面成为主要的聚合场所,单体从液滴内部向界面扩散补充消耗的单体,生成的聚合物在液滴界面上析出,包覆小分子烃液滴,最终得到纳米胶囊.通过透射电镜观察粒子形态和大小;利用接触角测定仪测定了细乳液液滴的表面张力.考察了NIPAAm用量、油溶性单体/小分子烃比例、交联剂用量及乳化剂和引发剂对的种类对胶囊形态的影响.  相似文献   

17.
This review summarizes the major advances that have occurred over the last 5 years in the use of plant-based colloidal particles for the stabilization of oil-in-water and water-in-oil emulsions. We consider the characteristics of polysaccharide-based particles, protein-based particles and organic crystals (flavonoids) with respect to their particle size, degree of aggregation, anisotropy, hydrophobicity and electrical charge. Specific effects of processing on particle functionality are identified. Special emphasis is directed towards the issue of correctly defining the stabilization mechanism to distinguish those cases where the particles are acting as genuine Pickering stabilizers, through direct monolayer adsorption at the liquid–liquid interface, from those cases where the particles are predominantly behaving as ‘structuring agents’ between droplets without necessarily adsorbing at the interface, for example, in many so-called high internal phase Pickering emulsions. Finally, we consider the outlook for future research activity in the field of Pickering emulsions for food applications.  相似文献   

18.
Pickering emulsions with controllable stability   总被引:1,自引:0,他引:1  
We prepare solid-stabilized emulsions using paramagnetic particles at an oil/water interface that can undergo macroscopic phase separation upon application of an external magnetic field. A critical field strength is found for which emulsion droplets begin to translate into the continuous-phase fluid. At higher fields, the emulsions destabilize, leading to a fully phase-separated system. This effect is reversible, and long-term stability can be recovered by remixing the components with mechanical agitation.  相似文献   

19.
The affinity of weak polyelectrolyte coated oxide particles to the oil-water interface can be controlled by the degree of dissociation and the thickness of the weak polyelectrolyte layer. Thereby the oil in water (o/w) emulsification ability of the particles can be enabled. We selected the weak polyacid poly(methacrylic acid sodium salt) and the weak polybase poly(allylamine hydrochloride) for the surface modification of oppositely charged alumina and silica colloids, respectively. The isoelectric point and the pH range of colloidal stability of both particle-polyelectrolyte composites depend on the thickness of the weak polyelectrolyte layer. The pH-dependent wettability of a weak polyelectrolyte-coated oxide surface is characterized by contact angle measurements. The o/w emulsification properties of both particles for the nonpolar oil dodecane and the more polar oil diethylphthalate are investigated by measurements of the droplet size distributions. Highly stable emulsions can be obtained when the degree of dissociation of the weak polyelectrolyte is below 80%. Here the average droplet size depends on the degree of dissociation, and a minimum can be found when 15 to 45% of the monomer units are dissociated. The thickness of the adsorbed polyelectrolyte layer strongly influences the droplet size of dodecane/water emulsion droplets but has a less pronounced impact on the diethylphthalate/water droplets. We explain the dependency of the droplet size on the emulsion pH value and the polyelectrolyte coating thickness with arguments based on the particle-wetting properties, the particle aggregation state, and the oil phase polarity. Cryo-SEM visualization shows that the regularity of the densely packed particles on the oil-water interface correlates with the degree of dissociation of the corresponding polyelectrolyte.  相似文献   

20.
We studied oil in water Pickering emulsions stabilized by cellulose nanocrystals obtained by hydrochloric acid hydrolysis of bacterial cellulose. The resulting solid particles, called bacterial cellulose nanocrystals (BCNs), present an elongated shape and low surface charge density, forming a colloidal suspension in water. The BCNs produced proved to stabilize the hexadecane/water interface, promoting monodispersed oil in water droplets around 4 μm in diameter stable for several months. We characterized the emulsion and visualized the particles at the surface of the droplets by scanning electron microscopy (SEM) and calculated the droplet coverage by varying the BCN concentration in the aqueous phase. A 60% coverage limit has been defined, above which very stable, deformable droplets are obtained. The high stability of the more covered droplets was attributed to the particle irreversible adsorption associated with the formation of a 2D network. Due to the sustainability and low environmental impact of cellulose, the BCN based emulsions open opportunities for the development of environmentally friendly new materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号