首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
弹流润滑条件下表面形貌对摩擦噪声的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了弹流润滑状态下表面形貌对摩擦噪声的影响.通过激光微加工方法在金属圆盘试件表面上制造了两种沟槽型织构表面形貌,在双盘摩擦磨损试验机上对不同表面形貌进行了摩擦噪声和摩擦特性试验,分析了线接触弹流润滑条件下不同工况和表面形貌影响摩擦噪声的机理,并结合有限元分析对结论加以验证.结果表明:载荷和转速的变化对线接触摩擦噪声有明显影响,由于线接触副工作在部分膜弹流润滑状态下,所以摩擦噪声的特性与干摩擦时类似,摩擦因数较大的表面会辐射出更强的摩擦噪声;特定结构的表面形貌能改善表面润滑特性,有效降低摩擦噪声声压级,沟槽型织构的存在可以打断接触区域应力分布,减轻接触面微凸体碰撞作用,从而降低了表面自激振动,同时合适的表面形貌结构也有利于润滑油膜的形成,减小了系统的摩擦能量,达到降低摩擦噪声的效果.  相似文献   

2.
In a line or point contact with an elastohydrodynamic lubricant oil film, solid-to-solid contacts are common and wear will occur at these places. Given that there is only a portion of the load is supported by the direct interaction of roughness asperities, the wear coefficient should be less than that for dry contacts and account for the effect of surface roughness and oil film. Since it is difficult to obtain the wear coefficient value at different oil film thickness by experiments, this paper presents the methodology of determination of wear coefficient in mixed lubrication using finite element method (FEM). In this method, the roughness of contact surfaces is characterized as fractal surfaces by the Weierstrass–Mandelbrot (W–M) function, the sliding wear in mixed lubrication is simulated by the Coupled-Eulerian–Lagrangian (CEL) method and the wear volume is calculated according to the solid–solid contact load. Then the wear coefficient can be determined and the simulation example shows that the wear coefficient decreases nonlinearly with the increasing of oil film thickness and dynamic viscosity in mixed lubrication.  相似文献   

3.
本文从微极流体场方程出发,在润滑层的通常假设下,把它化简为两个独立的常微分方程组,并求得速度、微转动角速度的解析表达式.推导了微极流体润滑的雷诺方程,把它应用于有限长径向轴承的求解.通过数值计算得到了微极效应对各种动力参数、几何参数下轴承的压力分布、承载力、流量系数和摩擦系数的影响,并析了它的实际意义,使微极流体理论应用到工程问题又接近了一步.  相似文献   

4.
The response of concrete slab on Concrete-Faced Rockfill (CFR) dams is very important. This study investigates the reliability of the concrete slab on a CFR dam by the improved Rackwitz–Fiessler method under static loads. For this purpose, ANSYS finite element analysis software and FERUM reliability analysis program are combined with direct coupled method and response surface method. Reliability index and probability of failure of the concrete are computed in the all critical points of the concrete slab by dam height. This study is also expanded for the reliability of CFR dams including different concrete slab thickness. In addition to the linear behavior, geometrically and materially non-linear responses of the dam are considered in the finite element analysis which is performed with reliability analysis. The Drucker–Prager method and the multi linear kinematic hardening method are, respectively, used for concrete slab and for rockfill and foundation rock. Finite element model used in the analyses includes dam–reservoir–foundation interaction. Reservoir water is modeled by the Lagrangian approach. Welded and friction contact based on the Coulomb’s friction law are considered in the joints of the dam. One-dimensional two noded contact elements are used to define friction. The self-weight of the dam and the hydrostatic pressure of the reservoir water are considered in the numerical solutions. According to this study, hydrostatic pressure, nonlinear response of the rockfill and the decrease in the concrete slab thickness reduce the reliability of the concrete slab of the CFR dam. Besides, the CFR dam models including friction are safer than the models including welded contact in the joints.  相似文献   

5.
This paper presents the probabilistic analysis of concrete-faced rockfill (CFR) dams according to the Monte Carlo Simulation (MCS) results which are obtained through the Response Surface Method (RSM). ANSYS finite element program is used to get displacement and principal stress components. First of all, some parametric studies are performed according to the simple and representative finite element model of dam body to obtain the optimum approximate model. Secondly, a sensitivity analysis is performed to get the most effective parameters on dam response. Then, RSM is used to obtain the approximate function through the selected parameters. After the performed analyses, star experimental design with quadratic function without mixed terms according to the k = 1 is determined as the most appropriate model. Finally, dam-foundation-reservoir interaction finite element model is constituted and probabilistic analyses are performed with MCS using the selected parameters, sampling method, function and arbitrary factor under gravity load for empty and full reservoir conditions. Geometrically and materially nonlinearity are considered in the analysis of dam-foundation-reservoir interaction system. Reservoir water is modeled by fluid finite elements based on the Lagrangian approach. Structural connections are modeled as welded contact and friction contact based on Coulomb’s friction law. Probabilistic displacements and stresses are presented and compared with deterministic results.  相似文献   

6.
We introduce a dynamic friction model for the pre-sliding behavior of a single asperity subjected to a constant normal and a varying tangential load based on Cattaneo-Mindlin's theory. The geometry of an arbitrary, axisymmetric asperity is included in the formulation of the governing differential equation. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
In this study a large knowledge base is first established through numerous designs of experiments on beam elements, based on a validated finite element model of a reference vehicle body-in-white. Then a recurrent artificial neural network is applied to extract the input/output relationship between the crash dynamic characteristics and beam element features. With such established relationship, beam element features are predicted according to expected crash dynamic characteristics. Our analyses show that the predicted beam element model enables generating essential crash dynamic characteristics for concept BIW design evaluation at a reasonable level of accuracy. Last, a data assurance criterion is developed to quantitatively validate the beam element modelling.  相似文献   

8.
The interaction between tire and road generates the transferable forces, which are necessary for driving dynamics and safety. These forces are based on friction between rubber material and pavement surface and depend on the roughness of the pavement, the slip velocity, the contact pressure and the temperature. Based on the finite element method, the friction coefficient is calculated by numerical simulation. The roughness of the pavement surface is described by the height difference correlation function (HDCF), which allows partitioning into different length scales. This multiscale approach is suitable to understand and to evaluate friction phenomena. These phenomena are hysteresis friction based on dissipation inside the rubber material and adhesion friction, which describes the direct bonding between two materials. Given, that the material parameters of rubber highly depend on temperature and the frictional dissipation leads to a warming of the rubber, the provision for these effects is necessary for a realistic desciption of friction. The method allows an understanding of friction phenomena on the micro-scale like the real contact area or the microscopic contact pressure. Also, the temperature distribution inside the tire cross-section can be illustrated. The resulting coefficient of friction is validated by experimental data based on linear friction tests and compared to analytical solutions. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
In this paper, we study a dynamic contact model with long memory which allows both the convex potential and nonconvex superpotentials to depend on history-dependent operators. The deformable body consists of a viscoelastic material with long memory and the process is assumed to be dynamic. The contact involves a nonmonotone Clarke subdifferential boundary condition and the friction is modeled by a version of the Coulomb's law of dry friction with the friction bound depending on the total slip. We introduce and study a fully discrete scheme of the problem, and derive error estimates for numerical solutions. Under appropriate solution regularity assumptions, an optimal order error estimate is derived for the linear finite element method. This theoretical result is illustrated numerically.  相似文献   

10.
In this work, a multiscale homogenization approach is introduced to provide friction features between rubber and rough contact partners. Different length scales of the rough surface are considered by using a decomposition of the height difference correlation (HDCF) or the power spectral density function (PSDF) in several sinusoidal waves to accumulate the micro- and mesoscopic friction into a macroscopic friction coefficient. By using the finite element method (FEM), the sensitivity of the influencing factors for instance slip velocity and contact pressure may be investigated for rigid and flexible surfaces in the two- and the three-dimensional case. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
A. Lotfi  B. Kiss 《PAMM》2002,1(1):157-158
The bilateral or unilateral contact problem with Coulomb friction between two elastic bodies is considered [1]. An algorithm is introduced to solve the resulting finite element system by a non‐overlapping domain decomposition method. The global problem is transformed to a smaller problem on the contact surface. The solution is obtained by using a successive approximation method, in each step of this algorithm we solve two intermediate problems the first with prescribed tangential pressure and the second with prescribed normal pressure.  相似文献   

12.
This paper deals with the numerical solution of the wheel - rail rolling contact problems. The unilateral dynamic contact problem between a rigid wheel and a viscoelastic rail lying on a rigid foundation is considered. The contact with the generalized Coulomb friction law occurs at a portion of the boundary of the contacting bodies. The Coulomb friction model where the friction coefficient is assumed to be Lipschitz continuous function of the sliding velocity is assumed. Moreover Archard's law of wear in the contact zone is assumed. This contact problem is governed by the evolutionary variational inequality of the second order. Finite difference and finite element methods are used to discretize this dynamic contact problem. Numerical examples are provided. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
A. Lotfi  B. Kiss 《PAMM》2003,2(1):242-243
The bilateral or unilateral contact problem with Coulomb friction between two elastic bodies is considered [1]. An algorithm is introduced to solve the resulting finite element system by a non‐overlapping domain decomposition method. The global problem is transformed to a smaller problem on the contact surface. The solution is obtained by using a successive approximation method, in each step of this algorithm we solve two intermediate problems the first with prescribed tangential pressure and the second with prescribed normal pressure.  相似文献   

14.
This paper introduces an artificial neural network (ANN) application to a hot strip mill to improve the model’s prediction ability for rolling force and rolling torque, as a function of various process parameters. To obtain a data basis for training and validation of the neural network, numerous three dimensional finite element simulations were carried out for different sets of process variables. Experimental data were compared with the finite element predictions to verify the model accuracy. The input variables are selected to be rolling speed, percentage of thickness reduction, initial temperature of the strip and friction coefficient in the contact area. A comprehensive analysis of the prediction errors of roll force and roll torque made by the ANN is presented. Model responses analysis is also conducted to enhance the understanding of the behavior of the NN model. The resulted ANN model is feasible for on-line control and rolling schedule optimization, and can be easily extended to cover different aluminum grades and strip sizes in a straight-forward way by generating the corresponding training data from a FE model.  相似文献   

15.
A finite-element method based on the self-defined truss element is developed to model the plane truss structure with the flexible connector, and the dynamic characteristic of the corresponding model is analyzed in this paper. Firstly, a new type truss structure with flexible connectors included clearance, friction and axial constraint is analyzed. A self-defined truss element is defined based on the mechanical analysis of the new type truss structure, and a finite-element model is introduced based on this element. The nonlinear elastic-damper model and the Coulomb friction model are adopted to analyze the nonlinear nodal forces from the impact and friction in the clearance field. Secondly, a modified numerical solution method is developed based on the Newmark implicit integrate method together with Newton–Raphson iterated method, and then is applied to solve the nonlinear dynamic model. Finally, an example is simulated by the above numerical method, and the effects of several key parameters (such as the linkage stiffness, contact stiffness, and clearance) on the dynamic characteristic are analyzed. The results validate the numerical method, and show the effectiveness of the nonlinear finite-element model. The dynamic analysis about the key parameters offers some helpful guidelines for designing flexible truss structure.  相似文献   

16.
Innovative stiffness and damping models for oil films are developed to account for the impacts in both normal and tangential directions. Given that these models are applied to a gear drive in line contact elastohydrodynamic lubrication (EHL), the combined stiffness is derived from the stiffness of both the oil film and gear tooth while the combined damping is established from the damping of these parts. The effects of three fundamental parameters (contact force, rotation speed, and tooth numbers) of the gear drive in line contact EHL on the combined stiffness and damping are then investigated. The results reveal that the small normal and tangential stiffness of the lubricant can alleviate meshing impact and shear vibration, while the impact and friction heat can be reduced by using an oil film with either a large normal damping or small tangential damping. Given that its amplitude and fluctuation are closely related to shear rate, effective viscosity, entrainment velocity, and curvature radii, the improved combined stiffness and damping can be obtained by rationally matching the geometric and operating parameters.  相似文献   

17.
The aim of this paper is to comprehensively analyse the performance of a new ring-type brake energy dissipator through the finite element method (FEM) (formulation and finite element approximation of contact in nonlinear mechanics) and experimental comparison. This new structural device is used as a system component in rockfall barriers and fences and it is composed of steel bearing ropes, bent pipes and aluminium compression sleeves. The bearing ropes are guided through pipes bent into double-loops and held by compression sleeves. These elements work as brake rings. In important events the brake rings contract and so dissipate residual energy out of the ring net, without damaging the ropes. The rope’s breaking load is not diminished by activation of the brake. The full understanding of this problem implies the simultaneous study of three nonlinearities: material nonlinearity (plastic behaviour) and failure criteria, large displacements (geometric nonlinearity) and friction-contact phenomena among brake ring components. The explicit dynamic analysis procedure is carried out by means of the implementation of an explicit integration rule together with the use of diagonal element mass matrices. The equations of motion for the brake ring are integrated using the explicit central difference integration rule. The presence of the contact phenomenon implies the existence of inequality constraints. The conditions for normal contact are and gλ=0, where λ is the normal traction component and g is the gap function for the contact surface pair. To include frictional conditions, let us assume that Coulomb’s law of friction holds pointwise on the different contact surfaces, μ being the dynamic coefficient of friction. Next, we define the non-dimensional variable τ by means of the expression τ=t/μλ, where μλ is the frictional resistance and t is the tangential traction component. In order to find the best brake performance, different dynamic friction coefficients corresponding to the pressures of the compression sleeves have been adopted and simulated numerically by FEM and then we have compared them with the results from full-scale experimental tests. Finally, the most important conclusions of this study are given.  相似文献   

18.
The effects of engine design and operating parameters such as equivalence ratio (ER), compression ratio (CR), cycle pressure ratio (CPR), cycle temperature ratio (CTR), bore-stroke length ratio (D/L) inlet pressure, inlet temperature, friction coefficient (FC), mean piston speed (MPS) and engine speed on the performance characteristics such as brake thermal efficiency (BTE) and brake power output (BPO) are investigated for a steam injected gasoline engine (SIGE) with a simulation model validated with experiments using a realistic finite-time thermodynamics model (FTTM). Moreover, the energy losses arising from exhaust output (EO), heat transfer (HT), friction (FR) and incomplete combustion (IC), are illustrated by using graphs. The optimum values of engine speed, compression ratio, equivalence ratio, cycle temperature ratio and pressure ratio are presented by grid curves. Also, they are called performance maps. The results showed that the performance characteristics improve with enhancing inlet pressure, cycle pressure ratio and cycle temperature ratio; with diminishing inlet temperature and friction coefficient. The BPO can be increased up to 42%, 55% and 62% by using the optimum values of cycle pressure ratio, cycle temperature ratio and inlet pressure, respectively. Also, the BTE can be increased up to 8%, 12% and 15%, by the same way. On the other hand, the performance characteristics can improve or deteriorate with respect to different conditions of compression ratio, engine speed, equivalence ratio, stroke length and mean piston speed. Therefore, the optimum values should be determined to obtain the maximum performance conditions.  相似文献   

19.
The paper deals with a numerical treatment of the dynamic hemivariational inequality problem concerning the elastoplastic-fracturing unilateral contact with friction between neighboring structures under second-order geometric effects during earthquakes. The numerical procedure is based on an incremental problem formulation and on a double discretization, in space by the finite element method and in time by the Houbolt method. The generally nonconvex constitutive contact laws are piece-wise linearized, and in each time-step a nonconvex linear complementarity problem is solved with a reduced number of unknowns.  相似文献   

20.
In this paper, a simple and efficient contact algorithm is presented for the evaluation of density distribution in three-dimensional dynamic modeling of powder compaction processes. The contact node-to-surface algorithm is employed to impose the contact constraints in large deformation frictional contact, and the contact frictional slip is modified by the Coulomb friction law to simulate the frictional behavior between the rigid punch and the work-piece. The 3D nonlinear contact friction algorithm is employed together with a double-surface cap plasticity model within the framework of large finite element deformation in order to predict the non-uniform relative density distribution during the dynamic simulation of powder die-pressing. The accuracy and robustness of contact algorithm is verified by the impact analysis of two elastic rods, which is compared with the analytical solution. Finally, the performance of computational schemes is illustrated in dynamic modeling of a set of powder components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号