首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
This article attempts to study the stochastic coupled thermo-elasticity of thick hollow cylinders subjected to thermal shock loading considering uncertainty in mechanical properties. The thermo-elastic governing equations based on Green–Naghdi theory (without energy dissipation) are stochastically solved using a hybrid numerical method (combined Galerkin finite element and Newmark finite difference methods). The mechanical properties are considered as random variables with Gaussian distribution, which are generated using Monte Carlo simulation method with various coefficients of variations (COVs). The effects of uncertainty in mechanical properties with various coefficients of variations on thermo-elastic wave propagation are studied in detail. Also, the maximum, mean and variance of temperature, displacement and stresses are illustrated across thickness of cylinder in various times.  相似文献   

2.
An improved meshless radial point interpolation method, for the analysis of nonlinear transient heat conduction problems is proposed. This method is implemented for the heat conduction analysis of functionally graded materials (FGMs) with non-homogenous and/or temperature dependent heat sources. The conventional meshless RPIM is an appropriate numerical technique for the analysis of engineering problems. One advantage of this method is that it is based on the global weak formulation, and also the associated shape functions possess the Kronecker delta function property. However, in the original form, the evaluation of the global domain integrals requires the use of a background mesh. The proposed method benefits from a meshless integration technique, which has the capability of evaluating domain integrals with a better accuracy and speed in comparison with the conventional integration methods, and therefore a truly meshless technique is attained. This integration technique is especially designed for the fast and accurate evaluation of several domain integrals, with different integrands, over a single domain. Some 2D and 3D examples are provided to assess the efficiency of the proposed method.  相似文献   

3.
In this article, an analytical solution is presented for coupled thermoelasticity analysis (with energy dissipation) in a micro/nano beam resonator, considering small scale effects on the transient behaviors of fields’ variables. The Green–Naghdi (GN) theory of generalized coupled thermoelasticity and nonlocal Rayleigh beam theory (NRBT) are employed to derive the temperature and lateral deflection in the closed forms. The presented analytical solution is based on Laplace transform. To find the dynamic and transient behaviors of fields’ variables in time domain, an inversion Laplace technique is utilized, which is called Talbot method. The effects of some parameters such as small scale parameter and dimensions of the beam on the dynamic behaviors of temperature and lateral deflections are discussed in details. The propagation of wave fronts in both temperature and lateral deflection domains are obtained and graphically illustrated at various time instants.  相似文献   

4.
An analytical solution based on a new exact closed form procedure is presented for free vibration analysis of stepped circular and annular FG plates via first order shear deformation plate theory of Mindlin. The material properties change continuously through the thickness of the plate, which can vary according to a power-law distribution of the volume fraction of the constituents, whereas Poisson’s ratio is set to be constant. Based on the domain decomposition technique, five highly coupled governing partial differential equations of motion for freely vibrating FG plates were exactly solved by introducing the new potential functions as well as using the method of separation of variables. Several comparison studies were presented by those reported in the literature and the FEM analysis, for various thickness values and combinations of stepped thickness variations of circular/annular FG plates to demonstrate highly stability and accuracy of present exact procedure. The effect of the geometrical and material plate parameters such as step thickness ratios, step locations and the power law index on the natural frequencies of FG plates is investigated.  相似文献   

5.
The main objective of this research work is to present analytical solutions for free vibration analysis of moderately thick rectangular plates, which are composed of functionally graded materials (FGMs) and supported by either Winkler or Pasternak elastic foundations. The proposed rectangular plates have two opposite edges simply-supported, while all possible combinations of free, simply-supported and clamped boundary conditions are applied to the other two edges. In order to capture fundamental frequencies of the functionally graded (FG) rectangular plates resting on elastic foundation, the analysis procedure is based on the first-order shear deformation plate theory (FSDT) to derive and solve exactly the equations of motion. The mechanical properties of the FG plates are assumed to vary continuously through the thickness of the plate and obey a power law distribution of the volume fraction of the constituents, whereas Poisson’s ratio is set to be constant. First, a new formula for the shear correction factors, used in the Mindlin plate theory, is obtained for FG plates. Then the excellent accuracy of the present analytical solutions is confirmed by making some comparisons of the results with those available in literature. The effect of foundation stiffness parameters on the free vibration of the FG plates, constrained by different combinations of classical boundary conditions, is also presented for various values of aspect ratios, gradient indices, and thickness to length ratios.  相似文献   

6.
In this paper, post-buckling and nonlinear vibration analysis of geometrically imperfect beams made of functionally graded materials (FGMs) resting on nonlinear elastic foundation subjected to axial force are studied. The material properties of FGMs are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The assumptions of a small strain and moderate deformation are used. Based on Euler–Bernoulli beam theory and von-Karman geometric nonlinearity, the integral partial differential equation of motion is derived. Then this partial differential equation (PDE) problem, which has quadratic and cubic nonlinearities, is simplified into an ordinary differential equation (ODE) problem by using the Galerkin method. Finally, the governing equation is solved analytically using the variational iteration method (VIM). Some new results for the nonlinear natural frequencies and buckling load of the imperfect functionally graded (FG) beams such as the effects of vibration amplitude, elastic coefficients of foundation, axial force, end supports and material inhomogeneity are presented for future references. Results show that the imperfection has a significant effect on the post-buckling and vibration response of FG beams.  相似文献   

7.
This work studies transient thermal stresses in a thick hollow cylinder made of a functionally graded material (FGM). Material properties are considered to be nonlinear with a power law distribution through the thickness. The cylinder is assumed to be of infinite length, and the plane strain condition is supposed. The displacement and the distribution of stresses are obtained by analytical solution of governing differential equations of the Navier type. The transient dynamic behavior of thermal stresses is determined and discussed for various power law exponents appearing in functions determining mechanical properties of FGMs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A numerical study is conducted to analyze the melting process around a horizontal circular cylinder in the presence of the natural convection in the melt phase. Two boundary conditions are investigated one of constant wall temperature over the surface of the cylinder and the other of constant heat flux. A numerical code is developed using an unstructured finite-volume method and an enthalpy porosity technique to solve for natural convection coupled to solid–liquid phase change. The validity of the numerical code used is ascertained by comparing our results with previously published results.  相似文献   

9.
10.
A method is given for analyzing the nonsteady-state vibrations of a finite length cylinder based on using Laplace transforms and approaches developed previously for determining the vibration natural frequencies and forms. A numerical method is demonstrated for determining residues with reference to expressions for displacements and stresses. Quantitative estimates are given for stresses in a cylinder for a specific principle of the change in load with time and features of the time-dependent behavior of displacements in relation to the magnitude of the area of loading at the end are studied.Translated from Teoreticheskaya i Prikladnaya Mekhanika, No. 18, pp. 129–133, 1987.  相似文献   

11.
In this paper, a dynamical model of spinning multi-span pipes conveying fluid is proposed and the transverse natural and resonant frequencies and mode characteristics of such system are explored. The pipe body is considered to be composed of functionally graded materials (FGMs), in which a power law is used to govern the distribution of material properties along the pipe wall thickness. The partial differential equations (PDEs) governing two transverse motions of the pipe are derived by the extended Hamilton principle, in which the contributions of the FGM and intermediate supports are highlighted. The PDEs are discretized by the Galerkin procedure and the eigensystem theorem is applied to find the numerical solutions. The results show that various frequency characteristics can be attainable by use of different materials and mixing patterns. Attachments of intermediate supports can heighten the rigidity and improve the stability of spinning FG pipes conveying fluid, which are consequently used as “stabilizers” for the slender drill strings. Also, the mode characteristics of different spans will determine the locations of vibration amplitude of the pipes.  相似文献   

12.
Longitudinal vibrations coupled with transverse vibrations of whirling rods are investigated. It is known that longitudinal and transverse vibrations are governed by second and fourth order differential equations, respectively. Due to the Coriolis effect, a system of equations that governs the longitudinal and transverse displacements will be constructed by coupling these two equations together. Solutions of the equations assume small oscillations of vibration being superimposed on the steady state of the whirling rod. Exact and approximate solutions are obtained from the proposed governing equations, where the approximate solutions on displacements and natural frequencies are acquired by neglecting the Coriolis effect. A proposed numerical scheme known as complete function collocation method is implemented to solve the governing equations coupled with longitudinal and transverse displacements. The approximate results on both longitudinal and transverse natural frequencies show that natural frequencies are decreasing while the angular velocity of the rod is increasing. Exact and numerical results on both longitudinal and transverse natural frequencies show that there are no predictable trends whether natural frequencies are increasing or decreasing while the angular velocity of the rod is increasing.  相似文献   

13.
In this paper, the exact forms of integrals in the meshless local boundary integral equation method are derived and implemented for elastostatic problems. A weak form for a set of governing equations with a unit test function or polynomial test functions is transformed into local integral equations. Each node has its own support domain and is surrounded by a local integral domain with different shapes of boundaries. The meshless approximation based on the radial basis function (RBF) is employed for the implementation of displacements. A completed set of closed forms of the local boundary integrals are obtained. As there are no numerical integrations to be carried out the computational time is significantly reduced. Three examples are presented to demonstrate the application of this approach in solid mechanics.  相似文献   

14.
Two substructuring methods are investigated in order to allow for the use of the eXtended Finite Element Method (X-FEM) within commercial finite element (FE) codes without need for modifying their kernel. The global FE problem is decomposed into two subdomains, the safe domain and the cracked domain based on the value of the level sets representing the crack. The safe domain is treated by the host FE software while the cracked domain is treated by an independent XFE code. The first substructuring method consists of calculating the Schur matrix of a cracked super-element with the XFE code. The second technique introduces the finite element tearing and interconnecting method (FETI) which ensures the compatibility of the displacements at the interface between the cracked and safe subdomains. The stiffness matrices and nodal forces are provided by the XFE and FE codes for the cracked and safe subdomains, respectively. The solutions obtained with these two techniques are rigorously equivalent to those computed with the stand-alone XFE code. First, the computational efficiency of the two approaches is demonstrated. Second, a validation is proposed towards comparison with reference values of the stress intensity factors in simple 3D cracked geometries. Finally, this contribution presents an application of the FE–XFE–FETI method to the computation of the stress intensity factor induced by a crack inside a hydraulic cylinder under internal pressure.  相似文献   

15.
We present a non-overlapping spatial domain decomposition method for the solution of linear–quadratic parabolic optimal control problems. The spatial domain is decomposed into non-overlapping subdomains. The original parabolic optimal control problem is decomposed into smaller problems posed on space–time cylinder subdomains with auxiliary state and adjoint variables imposed as Dirichlet boundary conditions on the space–time interface boundary. The subdomain problems are coupled through Robin transmission conditions. This leads to a Schur complement equation in which the unknowns are the auxiliary state adjoint variables on the space-time interface boundary. The Schur complement operator is the sum of space–time subdomain Schur complement operators. The application of these subdomain Schur complement operators is equivalent to the solution of an subdomain parabolic optimal control problem. The subdomain Schur complement operators are shown to be invertible and the application of their inverses is equivalent to the solution of a related subdomain parabolic optimal control problem. We introduce a new family of Neumann–Neumann type preconditioners for the Schur complement system including several different coarse grid corrections. We compare the numerical performance of our preconditioners with an alternative approach recently introduced by Benamou.  相似文献   

16.
基于无网格自然单元法,建立了求解二维黏弹性力学问题的一条新途径.基于弹性 黏弹性对应原理和Laplace(拉普拉斯)变换技术,首先将黏弹性问题转换成Laplace域内与弹性力学问题相同的形式,然后推导出基于自然单元法分析黏弹性问题的基本公式.作为一种新兴的无网格数值计算方法,自然单元法的实质是一种基于自然邻近插值的Galerkin(伽辽金)法.相对于其他无网格法,自然单元法的形函数具有插值性和支持域各向异性等特点.算例结果证明了所提分析方法的有效性.  相似文献   

17.
In this paper, to consider all surface effects including surface elasticity, surface stress, and surface density, on the nonlinear free vibration analysis of simply-supported functionally graded Euler–Bernoulli nanobeams using nonlocal elasticity theory, the balance conditions between FG nanobeam bulk and its surfaces are considered to be satisfied assuming a cubic variation for the component of the normal stress through the FG nanobeam thickness. The nonlinear governing equation includes the von Kármán geometric nonlinearity and the material properties change continuously through the thickness of the FG nanobeam according to a power-law distribution of the volume fraction of the constituents. The multiple scale method is employed as an analytical solution for the nonlinear governing equation to obtain the nonlinear natural frequencies of FG nanobeams. The effect of the gradient index, the nanobeam length, thickness to length ratio, mode number, amplitude of deflection to radius of gyration ratio and nonlocal parameter on the frequency ratios of FG nanobeams is investigated.  相似文献   

18.
We introduce the ultra-weak variational formulation (UWVF) for fluid–solid vibration problems. In particular, we consider the scattering of time-harmonic acoustic pressure waves from solid, elastic objects. The problem is modeled using a coupled system of the Helmholtz and Navier equations. The transmission conditions on the fluid–solid interface are represented in an impedance-type form after which we can employ the well known ultra-weak formulations for the Helmholtz and Navier equations. The UWVF approximation for both equations is computed using a superposition of propagating plane waves. A condition number based criterion is used to define the plane wave basis dimension for each element. As a model problem we investigate the scattering of sound from an infinite elastic cylinder immersed in a fluid. A comparison of the UWVF approximation with the analytical solution shows that the method provides a means for solving wave problems on relatively coarse meshes. However, particular care is needed when the method is used for problems at frequencies near the resonance frequencies of the fluid–solid system.  相似文献   

19.
基于单位分解积分的伽辽金无网格方法研究   总被引:1,自引:0,他引:1  
数值积分是伽辽金无网格方法实施的一个重要环节,提出了一种适合于伽辽金无网格方法的单位分解积分技术.该积分技术建立在有限覆盖和单位分解基础之上,不需要对积分区域进行分解,具有较高的积分精度.并以无单元伽辽金方法为例,详细说明了基于单位分解积分的伽辽金无网格方法的实现过程.这样,在近似函数建立和数值积分过程中都不需要进行网格划分,从而形成一种“真正的”无网格方法.  相似文献   

20.
In this work, we solve the elliptic partial differential equation by coupling the meshless mixed Galerkin approximation using radial basis function with the three-field domain decomposition method. The formulation has been adopted to increase the efficiency of the numerical technique by decreasing the error and dealing with the ill conditioning of the linear system caused by the radial basis function. Convergence analysis of the coupled technique is treated and numerical results of some solved examples are given at the end of this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号