首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dong-Won Jung 《Pramana》2007,69(5):789-793
In the extra dimensional scenarios with gauge fields in the bulk, the Kaluza-Klein (KK) gauge bosons can induce Nambu-Jona-Lasinio (NJL) type attractive fourfermion interactions, which can break electroweak symmetry dynamically with accompanying composite Higgs fields. We consider a possibility that electroweak symmetry breaking (EWSB) is triggered by both a fundamental Higgs and a composite Higgs arising in a dynamical symmetry breaking mechanism induced by a new strong dynamics. The resulting Higgs sector is a partially composite two-Higgs doublet model with specific boundary conditions on the coupling and mass parameters originating at a compositeness scale Λ. The phenomenology of this model is discussed including the collider phenomenology at LHC and ILC.   相似文献   

2.
We consider non-renormalizable interaction term as perturbation of the conventional neutrino mass matrix. We assume that the neutrino masses and mixing arise through physics at a scale intermediate between Planck scale and the electroweak breaking scale. We also assume that, just above the electroweak breaking scale, neutrino masses are nearly degenerate and their mixing is tetra-maximal. Quantum gravity (Planck scale effects) lead to an effective SU(2) L ×U(1) invariant dimension-5 Lagrangian involving neutrino and Higgs fields. On electroweak symmetry breaking, this operator gives rise to correction to the above masses and mixing. These additional term can be consider as a perturbation to the Tetra-maximal mass matrix. The nature of gravitational interaction demands that the element of this perturbation matrix should be independent of flavor indices. We compute the deviation of three neutrino mixing angles due to Planck scale effects. We find that there is no change in θ 13 and θ 23 but change in solar mixing angle θ 12 is suppress by 3.0°.  相似文献   

3.
E. Scholz 《Annalen der Physik》2011,523(7):507-530
A Weyl geometric scale covariant approach to gravity due to Omote, Dirac, and Utiyama (1971ff) is reconsidered. It can be extended to the electroweak sector of elementary particle fields, taking into account their basic scaling freedom. Already Cheng (1988) indicated that electroweak symmetry breaking, usually attributed to the Higgs field with a boson expected at 0.1–0.3 TeV, may be due to a coupling between Weyl geometric gravity and electroweak interactions. Weyl geometry seems to be well suited for treating questions of elementary particle physics, which relate to scale invariance and its “breaking”. This setting suggests the existence of a scalar field boson at the surprisingly low energy of ~ 1 eV. That may appear unlikely; but, as a payoff, the acquirement of mass arises as a result of coupling to gravity in agreement with the understanding of mass as the gravitational charge of fields.  相似文献   

4.
We compute the relevant parameters of the combined Higgs and φ scalar effective potential in the littlest Higgs (LH) model. These parameters are obtained as the sum of two kinds of contributions. The first one is the one-loop radiative corrections coming from fermions and gauge bosons. The second one is obtained at tree level from the higher-order effective operators needed for the ultraviolet completion of the model. Finally, we analyze the restrictions that the requirement of reproducing the standard electroweak symmetry breaking of the SM set on the LH model parameters.  相似文献   

5.
The minimal dynamical breaking scheme of the electroweak group SUL(2)×Uy(1) based on the Nambu-Jona-Lasinio mechanism is expounded in the bubble approximation for the case with one generation of fermions. The configurations of allowed composite Higgs and Goldstone bosons depend on the ratio between the two independent four-fermion coupling constants and can be simply read out from the four-fermion Lagrangian. The Higgs boson mass is restricted between the double mass of the lighter and the heavier ffavor of the fermions. The implication of many-generation extension of the approach for the fine-tuning problem is conceived.  相似文献   

6.
We discuss the evaluation of the collinear single-logarithmic contributions to virtual electroweak corrections at high energies. More precisely, we prove the factorization of the mass singularities originating from loop diagrams involving collinear virtual gauge bosons coupled to external legs. We discuss, in particular, processes involving external longitudinal gauge bosons, which are treated using the Goldstone-boson equivalence theorem. The proof of factorization is performed within the 't Hooft–Feynman gauge at one-loop order and applies to arbitrary electroweak processes that are not mass-suppressed at high energies. As basic ingredients we use Ward identities for Green functions with arbitrary external particles involving a gauge boson collinear to one of these. The Ward identities are derived from the BRS invariance of the spontaneously broken electroweak gauge theory. Received: 4 May 2001 / Published online: 6 July 2001  相似文献   

7.
We discuss the possible signals of the degenerate BESS model at the LHC. This model describes a strongly interacting scenario responsible of the spontaneous breaking of the electroweak symmetry. It predicts two triplets of extra gauge bosons which are almost degenerate in mass. Due to this feature, the model has the property of decoupling and therefore, at low energies (below or of the order of 100 GeV) it is nearly indistinguishable from the Standard Model. However the new resonances, both neutral and charged, should give quite spectacular signals at the LHC, where the c.o.m. energy will allow to produce these gauge bosons directly. Received: 11 July 2000 / Published online: 13 November 2000  相似文献   

8.
This note summarizes many detailed physics studies done by the ATLAS and CMS Collaborations for the LHC, concentrating on processes involving the production of high mass states. These studies show that the LHC should be able to elucidate the mechanism of electroweak symmetry breaking and to study a variety of other topics related to physics at the TeV scale. In particular, a Higgs boson with couplings given by the Standard Model is observable in several channels over the full range of allowed masses. Its mass and some of its couplings will be determined. If supersymmetry is relevant to electroweak interactions, it will be discovered and the properties of many supersymmetric particles elucidated. Other new physics, such as the existence of massive gauge bosons and extra dimensions can be searched for extending existing limits by an order of magnitude or more.  相似文献   

9.
Quantum weakdynamics (QWD) as an gauge theory with the vacuum term is considered to be the unification of the electroweak interaction as an gauge theory. The grand unification of beyond the standard model is established by the group . The grand unified interactions break down to weak and strong interactions at a new grand unification scale, GeV, through dynamical spontaneous symmetry breaking (DSSB); the weak and strong coupling constants are the same, , at this scale. DSSB is realized by the condensation of scalar fields, postulated to be spatially longitudinal components of gauge bosons, instead of Higgs particles. Quark and lepton family generation, the Weinberg angle , and the Cabbibo angle are predicted. The electroweak coupling constants are , , , and ; there are symmetric isospin interactions. Received: 21 January 2001 / Published online: 21 November 2001  相似文献   

10.
A new dynamical symmetry breaking model of electroweak interactions is proposed based on interacting fermions. Two fermions of different SUL(2) representations form a symmetry breaking condensate and generate the lepton and quark masses. The weak gauge bosons obtain their usual standard model masses from a gauge-invariant Lagrangian of a doublet scalar field composed of the new fermion fields. The new fermion fields become massive by condensation. It is shown that the new charged fermions are produced at the next linear colliders in large number. The model is a low-energy one, which cannot be renormalized perturbatively. For the parameters of the model, unitarity constraints are presented.  相似文献   

11.
The possibility of a heavy supersymmetric spectrum at the Minimal Supersymmetric Standard Model is considered and the decoupling from the low energy electroweak scale is analyzed in detail. The formal proof of decoupling of supersymmetric particles from low energy physics is stated in terms of the effective action for the particles of the Standard Model that results by integrating out all the sparticles in the limit where their masses are larger than the electroweak scale. The computation of the effective action for the standard electroweak gauge bosons , Z and is performed by integrating out all the squarks, sleptons, charginos and neutralinos to one-loop. The Higgs sector is not considered in this paper. The large sparticle masses limit is also analyzed in detail. Explicit analytical formulae for the two-point functions of the electroweak gauge bosons to be valid in that limit are presented. Finally, the decoupling of sparticles in the S, T and U parameters is studied analitically. A discussion on how the decoupling takes place in terms of both the physical sparticle masses and the non-physical mass parameters as the -parameter and the soft-breaking parameters is included. Received: 27 March 1998 / Published online: 5 October 1998  相似文献   

12.
The energy levels of the left- and the right-handed neutrinos are split in the background of gravitational waves generated during inflation, which, in presence of lepton-number-violating interactions, gives rise to a net lepton asymmetry at equilibrium. Lepton number violation is achieved by the same dimension five operator which gives rise to neutrino masses after electroweak symmetry breaking. A net baryon asymmetry of the same magnitude can be generated from this lepton asymmetry by electroweak sphaleron processes.  相似文献   

13.
Thermal corrections in classically conformal models typically induce a strong first-order electroweak phase transition, thereby resulting in a stochastic gravitational background that could be detectable at gravitational wave observatories. After reviewing the basics of classically conformal scenarios, in this paper we investigate the phase transition dynamics in a thermal environment and the related gravitational wave phenomenology within the framework of scalar conformal extensions of the Standard Model. We find that minimal extensions involving only one additional scalar field struggle to reproduce the correct phase transition dynamics once thermal corrections are accounted for. Next-to-minimal models, instead, yield the desired electroweak symmetry breaking and typically result in a very strong gravitational wave signal.  相似文献   

14.
General Relativity and Standard Model are considered as a theory of dynamical scale symmetry with definite initial data compatible with the accepted Higgs mechanism. In this theory the Early Universe behaves like a factory of electroweak bosons and Higgs scalars, and it gives a possibility to identify three peaks in the Cosmic Microwave Background power spectrum with the contributions of photonic decays and annihilation processes of primordial Higgs, W and Z bosons in agreement with the QED coupling constant, Weinberg’s angle, and Higgs’ particle mass of about 118 GeV. The text was submitted by the authors in English.  相似文献   

15.
A Higgsless model for strong, electroweak and gravitational interactions is proposed. This model is based on the local symmetry group SU(3)×SU(2)L×U(1)×C,where C is the local conformal symmetry group. The natural minimal conformally invariant form of total Lagrangian is postulated. It contains all standard model fields and gravitational interaction. Using the unitary gauge and the conformal scale fixing conditions, we can eliminate all four real components of the Higgs doublet in this model. However, the masses of vector mesons, leptons, and quarks are automatically generated and are given by the same formulas as in the conventional standard model. In this manner one gets the mass generation without the mechanism of spontaneous symmetry breaking and without the remaining real dynamical Higgs field. The gravitational sector is analyzed, and it is shown that the model admits in the classical limit the Einsteinian form of gravitational interactions.  相似文献   

16.
It is likely that the LHC will observe a color- and charge-neutral scalar whose decays are consistent with those of the standard model (SM) Higgs boson. The Higgs interpretation of such a discovery is not the only possibility. For example, electroweak symmetry breaking could be triggered by a spontaneously broken, nearly conformal sector. The spectrum of states at the electroweak scale would then contain a narrow scalar resonance, the pseudo-Goldstone boson of conformal symmetry breaking, with Higgs-boson-like properties. If the conformal sector is strongly coupled, this pseudodilaton may be the only new state accessible at high energy colliders. We discuss the prospects for distinguishing this mode from a minimal Higgs boson at the LHC and ILC. The main discriminants between the two scenarios are (i) cubic self-interactions and (ii) a potential enhancement of couplings to massless SM gauge bosons.  相似文献   

17.
The lightest electroweak baryon as a topological object is investigated by using a general effective Lagrangian of composite electroweak symmetry breaking and the spin-independent electroweak baryon-nucleon scattering cross section is calculated. We explicitly show the masses of the electroweak baryons and the cross section as functions of the Peskin-Takeuchi S parameter and the ratio of the masses of axial-vector and vector composite bosons. We find that it is acceptable to regard the electroweak baryon as a dark matter candidate and the even number of technicolor is favored.  相似文献   

18.
Interactions of heavy quarks, in particular, of top quarks, with electroweak gauge bosons are expected to be very sensitive to new physics effects related to electroweak symmetry breaking. These interactions are described by the so-called static form factors, which include anomalous magnetic moments and the effective weak charges. We compute the second-order QCD corrections to these static form factors, which turn out to be sizable and need to be taken into account in searches for new anomalous coupling effects.  相似文献   

19.
The lightest electroweak baryon as a topological object is investigated by using a general effective Lagrangian of composite electroweak symmetry breaking and the spin-independent electroweak baryon-nucleon scattering cross section is calculated. We explicitly show the masses of the electroweak baryons and the cross section as functions of the Peskin-Takeuchi S parameter and the ratio of the masses of axial-vector and vector composite bosons. We find that it is acceptable to regard the electroweak baryon as a dark matter candidate and the even number of technicolor is favored.  相似文献   

20.
The Standard Model with massive fermions is formulated in the isotopic Foldy-Wouthuysen representation. SU(1) × U(1) — invariance of the theory in this representation is independent of whether fermions possess mass or not, and, consequently, it is not necessary to introduce interactions between Higgs bosons and fermions. The study discusses a possible relation between spontaneous breaking of parity in the isotopic Foldy-Wouthuysen representation and the composition of elementary particles of “dark matter”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号