首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some new β-diketone derivatives of boron having the general formula B2O(OAc)4?n[OC(R)C:CON(Ph)N:C CH3]n (where n = 1 or 2; R = CH3, C2H5, C6H5 and p-ClC6H4) have been synthesised by the reactions of oxy-bis(diacetatoborane) and substituted pyrazolones, such as 4-acyl-3-methyl-1-phenyl-2-pyrazolin-5-ones (acyl = acetyl, propionyl, benzoyl and p-chlorobenzoyl) in dry toluene solution in 1:1 and 1:2 molar ratios. These derivatives have been characterised by elemental analysis, molecular weight measurements. Structures have been proposed on the basis of chemical reactions, IR, 1H and 11B NMR spectral studies.In the derivatives B2O(OAc)3[OC(R)C:CON(Ph)N:C CH3] two of the three acetate groups are unidentate and the third is bridged between two boron atoms along with BOB linkage. Whereas the derivatives B2O(OAc)2[OC(R)C:CON(Ph)N:C CH3]2 are the mixture of geometrical isomers.  相似文献   

2.
Nitriles react with PF5 and also with AsF5, SbF5 forming 1:1-adducts. Using C2Cl3F3 as a solvent is of advantage for this reaction. PF5·CH3CN and [N(C2H5)4]SH give [N(C2H5)4][P2S2F8] with a sulfur double bridge and hexafluorophosphate in acetonitrile [1]. In case of AsF5·CH3CN a salt with the anion [AsF5NHCSCH3]? has been isolated [2]. Following products have been confirmed in a reaction mixture of PF5·CH3CN and SH? in acetonitrile by NMR (31P and 19F): [PF6]?, [F5PSPF5]2?,
, F4PSH, F3PS, HPS2F2, [PS2F2]?, [F5PNC(SH)CH3]?, [F5PNHCSCH3]?, [F5PSH]?. With a ratio PF5·CH3CN: SH? = 2:1 the S-bridge-complexes are prefered whereas in case of a ratio 1:1 the non-bridged P-complexes are the main products.  相似文献   

3.
The reaction of bis(trimethylsilyl)aminofluorsilanes, (Me3Si)2NSiF2R (R = CH3 or F), with sodium alcoholates or sodium phenylate yields under elimination of NaF alkoxy- and aryloxy-aminofluorosilanes of the composition (Me3Si)2NSiF(R)OR′(R′ = CH3, C2H5, C3H7, C6H5). A disiloxane is formed by thermal elimination of diethyl ether from bis(trimethylsilyl)aminomethylfluoroethoxysilane. The IR, mass, 1H and 19F NMR spectra of the above-mentioned compounds are reported. ab]Die Reaktion von Bis(trimethylsilyl)-aminofluorsilanen des Typs (Me3Si)2NSiF2R (R = F, CH3) mit Natriumalkoholaten und Natriumphenolat führt unter NaF-Abspaltung zu Alkyl- und Aryloxyaminofluorsilanen der Zusammensetzung: (Me3Si)2NSiF(R)OR′ (R′ = CH3, C2H7, C6H5, C6H5). Ein Disiloxan könnte durch die thermische Eliminierung von Diäthyläther aus Bis(trimethylsilyl)aminomethyl-fluor-äthoxy-silylarnin erhalten werden.Die IR-, Massen-, 1H- und 19F-NMR-Spektren der dargestellten Verbindungen werden mitgeteilt.  相似文献   

4.
On the Reaction of P4E3I2 (E = S, Se) with some Carboxylic Acids and Dithiocarbamic Acids By the reaction of α-P4E3I2 (E = S, Se) with carboxylic acids, dithiobenzoic acid or dithiocarbamic acids in the presence of triethylamin or with (C6H5)3SnR, or of β-P4E3I2 with tin-organic compounds α-P4E3(I)R, α(β)-P4E3R2 [R = ? OC(O)C6H5, ? OC(O)CH3, ? SC(S)NC5H10, ? SC(S)N(C2H5)2], α-P4S3(I)SC(S)C6H5, α-P4S3(SC(S)C6H5)2 and β-P4E3(I)R (R = ? OC(O)C6H5, ? OC(O)CH3) were prepared in solution and identified by 31P NMR spectroscopy. In addition α-P4S3(NC5H10)(SC(S)NC5H10) was detected. The β-isomers could be obtained also with lesser yields by the reaction with the dithiocarbamic acids, too. The substitution of the second iodine ligand in β-P4E3I2 resulted mainly in β-P4S3(Rexo)2 and by inversion of the configuration at a phosphorus atom, in β-P4E3RexoRendo. α-P4S3I2 reacted with methanol in CS2 to α-P4S3(OCH3)(SC(S)OCH3) and α-P4S3(SC(S)OCH3)2. The 31P NMR data of the compounds are discussed. The 31P NMR spectra of the α(β)-P4E3 dithiocarbamates indicate dynamic processes in the solution, e. g. α-P4S3(I)(SC(S)NR2) showed an intramolecular conversion, due to the anisobidentate dithiocarbamate ligand. This behaviour had not previously been noticed for compounds with a P4S3-skeleton.  相似文献   

5.
The preparation of some new phosphorus-fluoroamides of the type RP(O)FNH2 is described (R = CH3O-, C6H5O-, NH2-, C2H5O-, CH3NH-, C2H5NH-, C6H5-, C6H11-, C2H5-, CH3-, and C6H5S-). All of the R? P(O)FNH2 compounds were prepared at ?80°C in diethylether from the corresponding difluorides RP(O)F2 and ammonia: RP(O)F2 + 2NH3 → RP(O)FNH2 + NH4F. When P(O)FCl2 is reacted with ammonia in a molar ratio of 1:4, the hitherto unknown diamide of the series P(O)F3?n(NH2)n (n = 1,2,3) is formed. As starting compounds, CH3OP(O)F2 and CH3NHP(O)F2 were obtained for the first time. The shifts of characteristic valency frequencies and some nmr data are discussed in homologous series.  相似文献   

6.
Pentafluorophenyl Compounds of Phosphorus The preparation of compounds of the type R(C6F5)PX (R = CH3, C2H5, t-C4H9 and C6H5: X = F, Cl, Br and N(C2H5)2) is described. These derivatives are converted to trifluorophosphoranes, R(C6F5)PF3, and phosphinic acid fluorides, R(C6H5)P(:O)F. The n.m.r. spectra are discussed.  相似文献   

7.
Tris-chloromethyl-phosphine oxide, (ClCH2)3 P?O(I), is obtained by chlorination of (HOCH2)3P?O with PCl5 or (C6H5)3PCl2, and also by oxidation of (CICH2)3P?O and (ClCh2)2(CH3)P?O. High yields of tris-(dialkyloxyphosphonly-methyl)-phosphine oxides, [RO2(O)PCH2]2P?O (II) (R?CH3, C2H5, iso-C3H7, n-C4H9, 2- ethyl-hexyl), tris (alkyloxyphosphinyl-methyl)-phosphine oxides, [R2(O)PCH2]3P?O(R = C6H5, CH3) are obtained by heating tris-chloromethyl-phosphine oxides, [(RO) (R′) (O)PCH2]3P?O (R = C4H9, R′? C6H5) and tris-(oxophosphoranyl-phosphine oxides with phosphites, phosphonites and phosphinites, respectively, at 170–180°C for several hours. Compounds II possess an extraordinarily high absorption capacity. Thus a warm. 2% solution of II (R = C2H5) in benzene solidifies completely on cooling so that no benzene can be poured off. Tris-dihydroxyphosphonyl-methyl)-phosphine oxide, [(HO)2(O)PCH2]3P?O, obtained by hydrolysis of II (R ? C2H5) with refluxing conc. HCl or by thermal decomposition of II (R ? iso-C3H7) at 190°, titrates in aqueous solution as a hexabasic acid with breaks at pH = 4,4 (three equivalents) and pH = 10,7 (three equivalents). It forms crystalline salts with amines, alkali and alkaline earth metals, and is an excellent chelating agent. The 1H- and 31?P-NMR. spectra of all the compounds prepared are discussed.  相似文献   

8.
Synthesis of Fluoro-λ5-monophosphazenes and Fluoro-1,3-diaza-2λ5,4λ5-diphosphetidines by Means of the Staudinger Reaction 35 Tetrafluoro- and 2 difluorodiaza-diphosphetidines as well as 4 difluoro- and 30 monofluoro-λ5-monophosphazenes were prepared by the Staudinger reaction between tervalent phosphorus fluorides, RnPF3?n (n = 1, 2; R = R2N, (CH2)5N, O(CH2)4N, RO, (CH2O)2, alkyl, aryl) and phenylazides, X? C6H4N3 (X = H, 4-CH3, 4-Cl, 4-Br, 4-NO2, 3-NO2). PF3 does not react with phenylazide The influence of substituents on the structure of the reaction products is discussed. Kinetic measurements allowed to determine the constants λPI of the substituents (CH2)5N, O(CH2)4N and R(C6H5)N (R = CH3, C2H5, n-C4H9).  相似文献   

9.
The reactions of sodium ethoxide in ethanol with various fluoroaromatics, C6F6?nHn, C6F5?nHnNO2, C6F5X (X = CF3, C6F5, COCH3, CH2Br), C6Cl6 and mH2C6Cl4 have been studied. Partial substitution of the aromatic halogen was observed. The new products have been characterized by elemental analysis, NMR (H?1 and F?19), infrared and mass spectroscopy.  相似文献   

10.
Using silyl protected organic hydroxo compounds substitution of fluorine in IF5 is successful.Reacting IF5 with Si(OCH3)4 in CH3CN or SO2 using different molar ratios it was shown that in the series IF5?n(OCH3)n only the first member IF4(OCH3) (n=1) is stable enough to be isolated. The product in solution with n=2 bismutates to products with n=1 and n=3 if isolated as solids. The last one decomposes to the new oxo compound IF2O(OCH3) under elimination of CH3OCH3. With n=4,5 only redox reaction products could be isolated.IF2O(OCH3) can also be obtained by treating IF4(OCH3) with (CH3)6Si2O. Similarly reaction of IF5 with the disiloxane represents a new method to win IOF3. Excess of the oxygen transfer reagent leads to formation of IO2F and I2O5. An other oxo compound, IO(CH3COO)3, can be prepared by disolving IF5, IOF3 or IO2F in acetic acid anhydride.Reactions of IF5 with trimethylsilyl protected fluorinated benzoic acids RfCOOSi(CH3)3 (Rf = C6F5, 4HC6F4) appeared to be independent of the educts molar ratios because the only products are IF(RfCOO)4.In order to stabilize iodine (V) derivates with bifunctional chelating oxo ligands we applicated bis(trimethylsilyl) pinacolate, and in smooth reactions we yielded IF3[OC(CH3)2C(CH3)2O] and IF[OC(CH3)2  C(CH3)2O]2, in which iodine is part of five membered heterocyclic rings. The 19F-nmr-spectra are consistent with the diolate occupying the axiale and equatorial positions.An extension of the silyl method is the new synthesis of C6F5IF4 which could be obtained in the smooth reaction of IF5 with stochiometric amounts of Si(C6F5)4.  相似文献   

11.
Bis(fluorobenzoyloxy)methyl phosphane sulfides CH3P(S) [OC(O)R]2 [R = C6H4-2-F (1), C6H4-3-F (2), C6H4-4-F (3), C6H3-2,6-F2 (4), and C6F5 (5)] were prepared by treating silver salts of carboxylic acids AgOC(O)R with CH3P(S)Cl2 and characterised by IR- and NMR-spectroscopy. Compared to bis(fluorobenzoyloxy)methylphosphane oxides, there is less tendency towards formation of symmetrical anhydrides and greater stability to hydrolysis.  相似文献   

12.
Oxygen and fluorine Kα X-ray emission spectra have been obtained for a number of oxygen-containing compounds: H2O, CH3OH, C6H5OH, C6H5OCH3, C6F5OH and 4-XC6F4OCH3 (X = F, OCH3, CF3) in the solid or gaseous states and interpreted on the basis of the UV photoelectron and ESCA data and the results of MINDO/3 calculations. The mixing of the oxygen 2pAO with the highest occupied π-orbitals of the benzene ring is concluded to be small. The main contribution of the 2p(O)AO is shown to be to the system of σ-levels and lower-lying π-levels. CH3OH is assumed to have hyperconjugation. Comparison of the electronic structures of oxygen in phenol and anisole with those in their polyfluorinated analogues shows the reduced effectiveness of oxygen 2pAO conjugation with the π-system of the benzene ring in the latter cases.  相似文献   

13.
Triorganoantimony and Triorganobismuth Derivatives of 2-Pyridinecarboxylic Acid and 2-Pyridylacetic Acid. Crystal and Molecular Structures of (C6H5)3Sb(O2C-2-C5H4N)2 and (CH3)3Sb(O2CCH2-2-C5H4N)2 Triorganoantimony and triorganobismuth dicarboxylates R3M(O2C-2-C5H4N)2 (M = Sb, R = CH3, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4) and (CH3)3Sb(O2CCH2-2-C5H4N)2 have been prepared from (CH3)3Sb(OH)2, R3SbO (R = C6H5, 4-CH3OC6H4), or R3BiCO3 (R = C6H5, 4-CH3C6H4) and the appropriate heterocyclic carboxylic acid. Vibrational spectroscopic data indicate a trigonal bipyramidal environment of M the O(? C)-atoms of the carboxylate ligands being in the apical and three C atoms (of R) in the equatorial positions; in addition coordinative interaction occurs in the 2-pyridinecarboxylates between M and O(?C) of one and N of the other carboxylate ligand and in (CH3)3)Sb(O2CCH2-2-C5H4N)2 between Sb and O(?C) of both carboxylate ligands. (C6H5)3Sb(O2C-2-C5H4N)2/(CH3)3Sb(O2CCH2-2-C5H4N)2 crystallize monoclinic [space group P21/c/P21/n; a = 892.6(9)/1043.4(6), b = 1326.9(6)/3166.2(18), c = 2233.1(9)/1147.5(7) pm, β = 99.74(8)°/97.67(5)° Z = 4/8; d(calc.) = 1.522/1.553 × Mg m?3; Vcell = 2606.7 × 106/3757.0 × 106pm3, structure determination from 3798/4965 independent reflexions (F ≥ 4.0 σ(F))/(I ≥ 1.96 σ(I), R(unweighted) = 0.024/0.036]. Sb is bonding to three C6H5/CH3 groups in the equatorial plane [mean distances Sb? C: 212.2(3)/208.7(6) pm] and two carboxylate ligands via O in the apical positions [Sb? O distances: 218.5(2), 209.9(2)/212.1(3), 213.2(3) pm]. In (C6H5)3Sb(O2C-2-C5H4N)2 there is a short Sb? O(?C) and a short Sb? N contact [Sb? O: 272.1(2), Sb? N: 260.2(2) pm] and distoritions of the equatorial angles [C? Sb? C: 99.2(1)°, 158.2(1)°, 102.0(1).] and of the axial angle [O? Sb? O: 169.9(1)°], and in (CH3)3Sb(O2CCH2-2-C5H4N)2, which contains two different molecules in the asym-metric unit, there are two Sb? O(?C) contacts [Sb? O, mean: 302.2(4), and 310.7(4)pm, respectively] and distortions of the equatorial angles [C? Sb? C: 114.5(2)°, 132.4(3)° 113.1(2)°, and 123.9(3)° 115.5(2)°, 120.6(3)°, respectively] and of the axial angles [O? Sb? O: 174,9(1)°, 177.9(1)°, respectively].  相似文献   

14.
Copper(II) complexes of unsymmetrical bifunctional tetradentate azomethines having the general formulae, (OC10H6CH:NXN:C(R)C6H4O)Cu, (OC10H6CH:NXN:C(CH3)CHC(CH3)OCu, (OC6H4CH:NXN:C(CH3)C6H4O)Cu, (OC6H4C(R);NXN:C(CH3)CHC(CH3)O)Cu (where R = H or CH3, X = (CH2)3, (CH2)4, (CH2)6 or -oC6H4) have been synthesized by the reactions of preformed mixed imine complexes of the type, CuLL′ (where L and L′ are two different imines such as 2-hydroxy-1-naphthaldimine, salicylaldimine, o-hydroxyacetophenonimine or acetylacetonimine) with diamines such as 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane or o-phenylenediamine. These complexes have been characterized by elemental analyses, TLC, conductance, magnetic measurements, IR and electronic spectra.  相似文献   

15.
The novel complexes CpFe(CO)(COR)P(C6H5)2NR'R* with Cp = C5H5,C9H7 (indenyl); R = CH3, C2H5, CH(CH3)2, CH2C6H5;R` = H, CH3, C2H5, CH2C6H5 and R* = (S)-CH(CH3)(C6H5), have been synthesized by reaction of CpFe(CO)2R wiht P(C6H5)2NR`R* and characterized analytically as well as spectroscopically. The pairs of diastereoisomers RS/SS have been separated by preparative liquid chromatography and fractional crystallization, respectively. The optically pure complexes (+)436- und ()436-CpFe(CO)(COR)P(C6H5)2NR`R* are configurationally stable at room temperature. At higher temperatures they equilibrate with CpFe(CO)2R and epimerize with respect to the Fe configuration.  相似文献   

16.
Inhaltsübersicht. Triorganoantimon- und Triorganobismutdicarboxylate R3M[O2C(CH2)n-2-C4H3X]2 (M = Sb, R = CH3, C6H11, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4; n = 0, X = O, S, NH, NCH3. M = Sb, R = CH3, C6H5; M = Bi, R = C6H5; n = 1, X = O, S. M = Sb, R = C6H11, n = 1, X = S; R = 4-FC6H4, n = 0, X = O, S, NCH3; R = 2,4,6-(CH3)3C6H2, n = 0, X = O, S, NH) wurden durch Reaktionen von R3Sb(OH)2 (R = CH3, C6H11, 2,4,6-(CH3)3C6H2), R3SbO (R = C6H5, 4-CH3OC6H4, 4-FC6H4) bzw. R3BiCO3 mit den entsprechenden fünfgliedrigen heterocyclischen Carbonsäuren 2-C4H3X(CH2)nCOOH dargestellt. Auf der Basis schwingungsspektroskopischer Daten wird für alle Verbindungen eine trigonal bipyramidale Umgebung vom M (zwei O-Atome von einzähnigen Carboxylatliganden in den apikalen, drei C-Atome von R in den äquatorialen Positionen) vorgeschlagen, ferner eine schwache Wechselwirkung zwischen O(=C) jeder Carboxylatgruppe und M. Die Kristallstrukturbestimmung von (C6H5)3Sb(O2C–2-C4H3S)3 stützt diesen Vorschlag. Die Verbindung kristallisiert triklin [Raumgruppe P$1; a = 891,8(14), b = 1058,2(12), c = 1435,6(9) pm, α = 68,53(8), β = 85,47(9), γ = 85,99(11)°; Z = 2; d(ber.) = 1,607 Mg m–3; V(Zelle) = 1255,6 Å3; Strukturbestimmung anhand von 3947 unabhängigen Reflexen (Fo > 3σ(F2o)), R(ungewichtet) = 0,037]. Sb bindet drei C6H5-Gruppen in der äquatorialen Ebene [mittlerer Abstand Sb–C: 211,1(5)pm] und zwei einzähnige Carboxylatliganden in den apikalen Positionen einer verzerrten trigonalen Bipyramide [mittlerer Abstand Sb–O: 212,0(4) pm]. Aus den relativ kurzen Sb – O(=C)-Abständen [274,4(4) und 294,9(4) pm] und aus der Aufweitung des dem O(=C)-Atom nächsten äquatorialen C–Sb–C-Winkels auf 145,9(2)° [andere C-Sb-C-Winkel: 104,4(2), 109,5(2)°] wird auf schwache Sb–O(=C)-Koordination geschlossen. Schließlich wird eine Korrelation zwischen dem (+, –)I-Effekt des Organoliganden R an M (M = Sb, Bi) und der Stärke der M–O(=C)-Koordination in den Dicarboxylaten R3M[O2C(CH2)n–2-C4H3X]2 vorgeschlagen. Triorganoanümony and Triorganobismuth Derivatives of Carbonic Acids of Five-membered Heterocycles. Crystal and Molecular Structure of (C6H5)3Sb(O2C–2-C4H3S)2 Triorganoantimony- and triorganobismuth dicarboxylates R3M[O2C(CH2)n–2-C4H3X]2 (M = Sb, R = CH3, C6H11, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4; n = 0, X = O, S, NH, NCH3. M = Sb, R = CH3, C6H5; M = Bi, R = C6H5; n = 1, X = O, S. M = Sb, R = C6H11, n = 1, X = S; R = 4-FC6H4, n = 0, X = O, S, NCH3; R = 2,4,6-(CH3)3C6H2, n = 0, X = O, S, NH) have been prepared by reaction of R3Sb(OH)2 (R = CH3, C6H11; 2,4,6-(CH3)3C6H2), R3SbO (R = C6H5, 4-CH3OC6H4, 4-FC6H4) or R3BiCO3 with the appropriate five-membered heterocyclic carboxylic acid. From vibrational data for all compounds a trigonal bipyramidal environment around M (two O atoms of unidendate carboxylate ligands in apical, three C atoms (of R) in equatorial positions) is proposed and also an additional weak interaction of O(=C) of each carboxylate group and M. The crystal structure determination of Ph3Sb(O2C–2-C4H3S)2 gives additional prove to this proposal. It crystallizes triclinic [space group P$1; a = 891.8(14), b = 1058.2(12), c = 1435.6(9) pm, α = 68.53(8), β = 85.47(9), γ = 85.99(11)°; Z = 2; d(calc.) = 1.607 Mg m–3; Vcell = 1255.6 Å3; structure determination from 3 947 independent reflexions (Fo > 3σ(F2o)), R(unweighted) = 0.037]. Sb is bonding to three C6H5 groups in the equatorial plane [mean distance Sb–C: 211.1(5) pm] and two unidentate carboxylate ligands in the apical positions of a distorted trigonal bipyramid [mean distance Sb–O: 212.0(4) pm]. From the relatively short Sb–O(=C) distances [274.4(4) and 294.9(4) pm] and from the enlarged value of the equatorial C–Sb–C angle next to the O(=C) atom [145.9(2)°; other C–Sb–C angles: 104.4(2), 109.5(2)°] additional weak Sb–O(=C) coordination is inferred. Finally a correlation between the (+, –) I-effect of the organic ligands It at M and the strength of the M–O = C interaction is suggested.  相似文献   

17.
The syntheses and properties of the titanium(III) complexes Cp2Tir · R′CN (R = C6H5, o-, m-, p-CH3C6H4, CH2C6H5, C6F5, Cl; R′ = CH3, t-C4H9, C6H5, o-CH3C6H4, 2,6-(CH3)2C6H3) are described. In the complexes the nitrogen atom of the cyanide ligands is coordinated to the metal. The thermal stabilities of the complexes depend markedly on R and R′; on heating they undergo a novel reaction in which two cyanide ligands are coupled by formation of a CC bond, while the metal is oxidized to titanium(IV).  相似文献   

18.
The reactions of RCo(BDM1,3pn)(H2O) with light, heat, acids, electrophiles and nucleophiles were studied. (HBDM1,3pn is a mononegative, tetradentate dioxime-diimine ligand formed by condensing 2,3-butanedionemonoxime with 1,3-propanediamine in a 2/1 molar ratio; R = CH3, C2H5, n-C3H7, n-C4H9, and C6H3CH2-) Pyrolysis and photolysis of the alkyl complexes result in a cobalt(II) complex (anaerobic conditions) along with alkenes and alkanes. The major organic products from solid state pyrolysis at 200°C or photolysis in water are CH4 (R = CH3), C2H4 (R = C2H5), C3H6 (R = n-C3H7), C4H8 (R = n-C4H9) and (C6H5CH2)2 (R = C6H5CH2). No alkyl—cobalt bond cleavage occurs with acids or bases in most cases. Two exceptions are the reactions with 3 M HNO3 at 25°C and with 1 M NaOH at 52°C. Electrophiles like I2 cleave the alkyl—cobalt bond forming RI and CoIII (BDM1,3pn)I2. Nucleophilic reagents (N-) displace the H2O trans to the alkyl group to form RCo(BDM1,3pn)(N), but do not dealkylate the alkyl complex under the reaction conditions studied.  相似文献   

19.
In contrast to RFSO3CH2R(1)(R=hydrogen, alkyl and perfluoroalkyl) and RFSO3CF2RF′ (2), the reactions of difluoromethyl perfluoroalkanesulfonates RFSO3CF2H (3) With nucleophiles are more complicated. Halide inos, X? (X = F, Cl, I) and ethanol only attack the alkoxyl carbon atom, cleaving the C? O bond to give HCF2X (4) and HCF2OEt (5) respectively. Other reagents such as RCO2? (R=CH3, CF3), C6H5S? etc. can either attack the carbon or sulfur atom of 3 to give the corresponding products of C? O and S? O bond cleavages. More basic nucleophiles RO? (R = C6H5, Et) mainly abstract the proton of the HCF2 moiety to produce difluorocarbene. Ether and benzene, which can be alkylated by methyl perfluoroalkanesulfonate, do not react with 3 under similar conditions. The reaction rate of 3 with KF is much slower than that of 1 (R = H). All these data seem to indicate that the shielding effect caused by the two fluorine atoms on the methyl carbon in 3 prevents to some extent the nucleophilic attack on this carbon, but not so completely as in 2 due to the presence of a hydrogen atom.  相似文献   

20.
Some new N‐4‐Fluorobenzoyl phosphoric triamides with formula 4‐F‐C6H4C(O)N(H)P(O)X2, X = NH‐C(CH3)3 ( 1 ), NH‐CH2‐CH=CH2 ( 2 ), NH‐CH2C6H5 ( 3 ), N(CH3)(C6H5) ( 4 ), NH‐CH(CH3)(C6H5) ( 5 ) were synthesized and characterized by 1H, 13C, 31P NMR, IR and Mass spectroscopy and elemental analysis. The structures of compounds 1 , 3 and 4 were investigated by X‐ray crystallography. The P=O and C=O bonds in these compounds are anti. Compounds 1 and 3 form one dimensional polymeric chain produced by intra‐ and intermolecular ‐P=O···H‐N‐ hydrogen bonds. Compound 4 forms only a centrosymmetric dimer in the crystalline lattice via two equal ‐P=O···H‐N‐ hydrogen bonds. 1H and 13C NMR spectra show two series of signals for the two amine groups in compound 1 . This is also observed for the two α‐methylbenzylamine groups in 5 due to the presence of chiral carbon atom in molecule. 13C NMR spectrum of compound 4 shows that 2J(P,Caliphatic) coupling constant for CH2 group is greater than for CH3 in agreement with our previous study. Mass spectra of compounds 1 ‐ 3 (containing 4‐F‐C6H4C(O)N(H)P(O) moiety) indicate the fragments of amidophosphoric acid and 4‐F‐C6H4CN+ that formed in a pseudo McLafferty rearrangement pathway. Also, the fragments of aliphatic amines have high intensity in mass spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号