首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 557 毫秒
1.
为研究圆环内爆轰波传播模式的特点,实验在螺旋型的管道内得到了不同初始压力下(p0=4~15 kPa)等当量比的乙烯/氧气预混气体的爆轰性能。采用烟膜片记录爆轰波运行轨迹,高速摄影捕捉火焰面。结果表明:随着初始压力的降低,实验依次得到稳定传播模式、临界传播模式、不稳定传播模式。临界传播模式具有强烈的速度震荡,烟膜板中内壁面附近周期性的出现过驱爆轰的胞格结构。当初始压力接近极限时,圆环内出现驰振爆轰波,驰振爆轰的再生过程是由于压缩效应不断累积而引起的局部爆炸。  相似文献   

2.
气相爆轰波在分叉管中传播现象的数值研究   总被引:1,自引:0,他引:1  
数值研究气相爆轰波在分叉管中的传播现象.用二阶附加半隐龙格-库塔法和5阶WENO格式求解二维欧拉方程,用基元反应描述爆轰化学反应过程,得到了密度、压力、温度、典型组元质量分数场及数值胞格结构和爆轰波平均速度.结果表明:气相爆轰波在分叉管中传播,分叉口左尖点的稀疏波导致诱导激波后压力、温度急剧下降,诱导激波和化学反应区分离,爆轰波衰减为爆燃波(即爆轰熄灭).分离后的诱导激波在垂直支管右壁面反射,并导致二次起爆.畸变的诱导激波在水平和垂直支管中均发生马赫反射.分叉口上游均匀胞格区和分叉口附近大胞格区的边界不是直线,其起点通常位于分叉口左尖点上游或恰在左尖点.水平支管中马赫反射三波点迹线始于右尖点下游.分叉口左尖点附近的流场中出现了复杂的旋涡结构、未反应区及激波与旋涡作用.旋涡加速了未反应区的化学反应速率.反射激波与旋涡作用并使旋涡破碎.反射激波与未反应区作用,加速其反应消耗,并形成一个内嵌的射流.数值计算得到的波系演变和胞格结构与实验定性一致.  相似文献   

3.
 基于改进的时 空守恒元解元算法对气相爆轰波数值模拟中3种常用化学反应模型(二步模型,基元反应模型和Sichel的二步模型)进行了考察。对平面爆轰波和具有胞格结构的爆轰波进行了数值模拟,并对数值结果进行了比较和讨论。结果表明3种化学反应模型得到的爆轰参数准确性有所差异,但得到的胞格结构均能和实验结果较好吻合。3种化学反应模型在爆轰波数值模拟中各有优缺点,应视具体问题决定使用哪种化学反应模型。  相似文献   

4.
 建立了一种以子单元分析为基础,研究气相爆轰波沿胞格运动时的动力学机理的新方法。根据该子单元的性质和斜冲击波关系,首先推导了对撞前后前导冲击波沿胞格对称轴的马赫数之比和入射冲击波入射角及胞格几何性质的关系,求解了胞格结构中的三波点对撞问题。然后,采用爆炸波模拟前导冲击波的自持运动过程,求解气相爆轰波沿胞格的动力学过程,理论分析表明,气相爆轰波在胞格起点首先经历一个增长过程,然后才出现衰减。理论分析结果与实验和数值计算结果的比较表明符合得较好。  相似文献   

5.
人们很早就注意到可燃气体混合物中火焰在一定的条件下可以达到很高的传播速度。这种现象称之为爆轰。根据ZND模型,气体爆轰实际上是带有化学反应区的激波。它的结构是激波后方紧跟一个化学反应区,两者构成了爆轰波波阵面。爆轰波的特点是1)传播速度高,一般为2000m/S左右。2)伴随有发光现象。根据ZND模型,可燃气体的化学反应在反应区中进行,因而反应区具有一定的宽度。 人们对爆轰波作了大量的研究,但由于波阵面的传播速度太快,限制了对波阵面结构诸如阵面形状,反应区宽度等的研究。  相似文献   

6.
在内径为0.2m、高5.4m的大型立式激波管内,同时对液体燃料和黑索金(RDX)粉末进行抛撒,采用底部直接起爆,得到了RDX-液体燃料-空气三相体系的爆压和爆速,利用烟熏技术得到了爆轰波的胞格结构、尺寸及长宽比。结果表明:90#溶剂油-空气两相体系的平均爆压为5~6 MPa,可以将其作为燃料-空气炸药的主燃料;向该燃料中添加硝酸异丙酯(IPN)可以降低其临界起爆能,添加RDX能够提高体系的爆速和爆压。此外,通过理论分析结合实验验证得出,多相爆轰的临界起爆能和爆轰胞格尺寸之间存在与气相爆轰类似的关系。  相似文献   

7.
 改进烟迹技术之后,在初始为常温常压的条件下,进行了碳氢混合燃料(C5~C6)的气云爆轰胞格结构实验研究,得到了清晰的胞格烟迹记录,同时讨论了燃料气云的当量比和起爆能对胞格结构的影响。实验表明:C5~C6混合燃料的爆轰波胞格宽度和胞格长度均随当量比的增加而线性增大;随着起爆能的不断增大,混合燃料的胞格宽度和胞格长度均是先增大后减小,且当起爆能足够高时,在胞格结构内可观察到精细结构的存在。  相似文献   

8.
基于带化学反应的三维Euler方程,采用8组元和24个可逆化学反应的基元反应模型,对等当量比的气相氢气/氧气系统在圆环形燃烧室内的旋转爆轰进行了数值模拟。结果表明,子爆轰波、斜激波和滑移线组成了旋转爆轰波的基本三维结构。由于旋转爆轰燃烧室特殊的几何构型,即内壁的发散和外壁的收敛,使内壁面附近的爆轰强度要小于外壁面附近的爆轰强度,最终实现旋转爆轰波在燃烧室内的自持传播。  相似文献   

9.
旋转爆轰发动机环形燃烧室和预爆轰管的设计是影响发动机点火性能的关键因素。为了获得环形燃烧室中的起爆机制,使用多帧短时开快门摄像法,研究了不同含量氩气稀释的乙炔-氧气爆轰波经直管道沿切向进入环形通道中的传播过程和模式,重点关注爆轰波的失效和重新起爆机制。通过分析胞格模式发现环形通道内爆轰波的传播模式可以分为亚临界、临界和超临界3种状态。环形通道内爆轰波在顺时针和逆时针方向同时传播,根据初始压力和环形管道宽度的不同,会出现完全熄爆模式、熄爆-重新起爆模式和完全不熄爆模式,对应亚临界、临界和超临界3种状态。3种状态在顺时针和逆时针方向出现的顺序并不一致,相比较而言逆时针方向更易熄爆。研究同时也发现重新起爆通过两种方式实现:一种是通过解耦爆轰波与内壁面的反射以及其后的横向爆轰波,另外一种是通过燃烧转爆轰。通过分析直管的临界管径发现,随着环形通道宽度的增大,对于高浓度或低浓度氩气稀释的乙炔-氧气爆轰波,其临界管径均趋近于经典衍射问题中不稳定爆轰波的临界管径。实验研究结论将为旋转爆轰发动机燃烧室和预爆轰管的结构设计提供技术支持。  相似文献   

10.
爆轰波在弯管内传播过程数值分析   总被引:2,自引:0,他引:2  
应用基元反应模型和频散可控耗散格式(DCD)对氢氧爆轰波在弯管内的传播过程进行了数值模拟.计算中氢氧混合物化学反应采用了8种组分20个反应方程式.在处理化学反应引起的刚性问题时采用了时间算子分裂的方法.计算结果表明,在弯管小曲率半径壁面附近,由于膨胀稀疏作用,爆轰波强度减弱,在局部出现前导激波与放热反应区的解藕以及二次起爆现象;在弯管大曲率半径壁面上爆轰波在马赫反射和正规反射之间相互转变,使爆轰波加强.弯管内的爆轰现象与弯管曲率半径有关.  相似文献   

11.
 在长为32.4 m、内径为0.199 m的大型长直水平管道中,对铝粉-空气两相流的燃烧转爆轰(DDT)过程及爆轰波结构进行了实验研究。对铝粉-空气混合物弱点火条件下DDT过程不同阶段的特征进行了分析,实验结果显示混合物经历了缓慢反应压缩阶段、压缩波加速冲击波形成阶段、冲击反应过渡阶段、冲击反应向过压爆轰过渡阶段和爆轰阶段,得到了混合物各阶段的DDT参数,由此进一步分析了DDT浓度的上、下限。在1.4 m爆轰测试段的4个截面的环向上各均匀安装8个传感器,对爆轰波结果进行测试,并对铝粉-空气混合物爆轰波的单头结构进行了分析。  相似文献   

12.
A study of detonation velocity and cellular structure for stoichiometric heptane/oxygen and for some stoichiometric heptane/oxygen/argon mixtures is carried out in a shock tube at low initial pressure. The critical conditions for the detonation onset and for the propagation of a self-sustained detonation wave are determined. A simplified form of the ZND model used in conjunction with a validated detailed kinetic model leads to the determination of the proportionality factor, A, between the detonation cell width, λ, and the induction distance, Δ, in the detonation wave. This A factor is of practical importance to estimate the detonation properties of n-heptane based mixtures including n-heptane/air. The prediction of detonation cell size λ for n-heptane based mixtures is discussed according to the recent semi-empirical detonation model of Gavrikov et al. The cell sizes predicted according to this detonation model are underestimated by a factor of about 8. The limitations of this model are underlined when applied to n-heptane based mixtures.  相似文献   

13.
旋转爆震燃烧室与涡轮导向器组合实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
旋转爆震涡轮发动机正获得广泛的关注,但旋转爆震燃烧室出口存在着高频的压力波动,压力波动会降低涡轮的工作效率并减小涡轮的工作寿命.基于旋转爆震波的传播特点,开展了旋转爆震燃烧室与涡轮导向器组合结构的实验研究.燃料为H2,由位于燃烧室前端的120个小孔喷入燃烧室;氧化剂为空气,由径向环缝喷入燃烧室.在燃烧室内起爆旋转爆震波后,爆震产物直接流入导向器内.研究结果表明,随当量比的增加,燃烧室内爆震波的传播速度呈先增大后减小的趋势.在导向器出口仍存在与燃烧室内旋转爆震波同主频的振荡压力,但相对于导向器前的振荡压力,出口压力振幅减小了约64%.旋转爆震波传播速度的相对偏差先减小后增大,并且爆震波传播越稳定,其速度损失越小.   相似文献   

14.
The reflection of a CJ detonation from a perforated plate is used to generate high speed deflagrations downstream in order to investigate the critical conditions that lead to the onset of detonation. Different perforated plates were used to control the turbulence in the downstream deflagration waves. Streak Schlieren photography, ionization probes and pressure transducers are used to monitor the flow field and the transition to detonation. Stoichiometric mixtures of acetylene–oxygen and propane–oxygen were tested at low initial pressures. In some cases, acetylene–oxygen was diluted with 80% argon in order to render the mixture more “stable” (i.e., more regular detonation cell structure). The results show that prior to successful detonation initiation, a deflagration is formed that propagates at about half the CJ detonation velocity of the mixture. This “critical” deflagration (which propagates at a relatively constant velocity for a certain duration prior to the onset of detonation) is comprised of a leading shock wave followed by an extended turbulent reaction zone. The critical deflagration speed is not dependent on the turbulence characteristics of the perforated plate but rather on the energetics of the mixture like a CJ detonation (i.e., the deflagration front is driven by the expansion of the combustion products). Hence, the critical deflagration is identified as a CJ deflagration. The high intensity turbulence that is required to sustain its propagation is maintained via chemical instabilities in the reaction zone due to the coupling of pressure fluctuations with the energy release. Therefore, in “unstable” mixtures, critical deflagrations can be supported for long durations, whereas in “stable” mixtures, deflagrations decay as the initial plate generated turbulence decays. The eventual onset of detonation is postulated to be a result of the amplification of pressure waves (i.e., turbulence) that leads to the formation of local explosion centers via the SWACER mechanism during the pre-detonation period.  相似文献   

15.
The reaction zones of steady detonation waves in pressed 2′,2′,2′-trinitroethyl-4,4,4-trinitrobutyrate (TNETB) charges with densities within 1.23–1.79 g/cm3 and initial powder dispersities of 5 and 80 μm were studied with the use of a VISAR interferometer. It was demonstrated that the boundaries of the initial density range within which a pressure growth is observed instead of a chemical spike, predicted by the theory, are determined by the HE dispersity. The measured dependence of the detonation velocity on the initial HE density exhibits features suggestive of an underdriven detonation wave without a chemical spike. The peculiarities observed are accounted for by the heterogeneous structure of pressed HEs, the decomposition of which is of hot-spot character, occurring partly in the compression wave front.  相似文献   

16.
This paper discusses the Nonequilibrium Zeldovich-von Neumann-Doring (NEZND) theory of self-sustaining detonation waves and the Ignition and Growth reactive flow model of shock initiation and detonation wave propagation in solid explosives. The NEZND theory identified the nonequilibrium excitation processes that precede and follow the exothermic decomposition of a large high explosive molecule into several small reaction product molecules. The thermal energy deposited by the leading shock wave must be distributed to the vibrational modes of the explosive molecule before chemical reactions can occur. The induction time for the onset of the initial endothermic reactions can be calculated using high pressure-high temperature transition state theory. Since the chemical energy is released well behind the leading shock front of a detonation wave, a physical mechanism is required for this chemical energy to reinforce the leading shock front and maintain its overall constant velocity. This mechanism is the amplification of pressure wavelets in the reaction zone by the process of de-excitation of the initially highly vibrationally excited reaction product molecules. This process leads to the development of the three-dimensional structure of detonation waves observed for all explosives. For practical predictions of shock initiation and detonation in hydrodynamic codes, phenomenological reactive flow models have been developed. The Ignition and Growth reactive flow model of shock initiation and detonation in solid explosives has been very successful in describing the overall flow measured by embedded gauges and laser interferometry. This reactive flow model uses pressure and compression dependent reaction rates, because time-resolved experimental temperature data is not yet available. Since all chemical reaction rates are ultimately controlled by temperature, the next generation of reactive flow models will use temperature dependent reaction rates. Progress on a statistical hot spot ignition and growth reactive flow model with multistep Arrhenius chemical reaction pathways is discussed. The text was submitted by the authors in English.  相似文献   

17.
The passage of detonation waves through the interface between bubble media is studied experimentally. Data are obtained for the structure, velocity, and pressure of an incident detonation wave and a wave transmitted through the interface.  相似文献   

18.
The results of experimental studies of the nonideal detonation of high-density, high-energy aluminum-ammonium perchlorate-organic fuel-HE compositions and of the blast waves it generates in a channel filled with air are presented. Aluminum-enriched compositions have high densities (up to 2 g/cm3) and high heats of explosion, nearly twice that for TNT. The studies were performed to work out scientific fundamentals of controlling nonideal detonation and to explore the possibility of creating new high-energy high-density formulations with an enhanced fugacity effect. The factors that enable controlling the nonideal detonation of such charges were determined. It was demonstrated that, at RDX contents above 15%, the detonation velocity increases linearly with the charge density while the critical detonation diameter decreases. Adjusting the density, HE content, ratio of the components makes it possible to vary the detonation velocity in high-density charges over a wide range, from 4 to 7 km/s. The experimental data were compared to the thermodynamically calculated velocity of ideal detonation. For the compositions under study, the pressure- time histories of the blast wave generated in a cylindrical tube by the expanding detonation products at different distances from the charge were measured. The results were compared to analogous data obtained under the same conditions for the detonation of the same mass of TNT (100 g). The parameters of blast waves generated by the test compositions are markedly superior to those characteristic of TNT: the pressure at the leading front of the wave and pressure impulse at a given distance from the charge were found to be 1.5–2.0 (or even more) times those observed for TNT. The TNT equivalency at pressures 30–60 atm has similar values. The TNT equivalencies in pressure and pressure impulse depend nonmonotonically on the distance from the charge, so far unclear why. It was established that the interaction between excess fuel and air oxygen during the expansion of detonation products contributes little to supporting the blast wave.  相似文献   

19.
本文采用-维稳态ZND模型,从理论分析和数值计算上详细研究了爆震波的结构和非绝热粗糙管中摩擦阻力和热损失对爆震波传播的影响.推导了爆震波的传播方程,揭示了多种爆震机制和爆震极限的存在及其机理。对低速爆震的发生给出了理论解释.  相似文献   

20.
氢气-空气混合物中瞬态爆轰过程的二维数值模拟   总被引:12,自引:1,他引:11       下载免费PDF全文
 对高温火团引发的氢气-空气混合气的瞬态爆轰过程进行了二维数值模拟,考虑了H2-O2-N2的详细化学反应动力学机理,该机理包含了19个基元反应和9种组分。采用分裂格式处理带化学反应的Euler方程,其中使用全耦合的TVD格式求解流场,使用基于Gear算法的微分方程解法器求解化学反应过程。计算结果表明:在H2∶O2∶N2=0.4∶0.4∶0.2(摩尔比)的混合气中,高温气团初始温度为T/T0=5.3时可诱导爆轰,爆轰波以2 300 m/s的速度传播,同时爆轰波阵面在管壁会形成反射波。还对计算的爆轰波后组分的浓度和温度进行了讨论,为理解爆轰波后结构提供信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号