首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using interfacial polymerization (IP) of m-phenylenediamine aqueous solution containing polyoxovanadate nanoclusters (POV) and trimesoyl chloride (TMC) in organic solution, we fabricated a novel polyamide (PA)- polyoxovanadate nanocluster (POV) nanocomposite membranes (PA-POV TFN). The chemical structures and morphologies of the synthesized membranes were characterized by Fourier transform infrared (FTIR) spectroscopy, atomic force microscope (AFM), scanning electron microscopy (SEM) and water contact angle measurements. Experimental results showed that the performances of PA-POV TFN membranes are remarkably dependent on POV incorporation in the membranes, which could be controlled by using different amounts of POV particles. Moreover, the PA-POV TFN membranes illustrated outstanding antibacterial properties against Gram-negative E. coli. On the other hand, the incorporation of various amounts of POV in the membranes improved the membrane separation performances (water flux and salt rejection) as well as the antibacterial activity in FO process as compared to the original thin-film composite (TFC) polyamide membrane.  相似文献   

2.
Organic solvent nanofiltration (OSN) is a molecular separation method which offers a sustainable and reliable solution compared to the conventional energy-intensive separation processes. OSN can be successfully applied to several applications, such as food, pharmaceutical, petrochemical and fine-chemical industries. Current research on OSN membranes mainly focuses on polymeric materials due to the ease of processing, controlled formation of pores, lower fabrication costs and higher flexibility as compared with inorganic materials. However, there are some limitations for the polymeric membranes which can be partially surmounted by adding nanoscale fillers into the polymeric matrix to make nanocomposite membranes. This review aims to comprehensively evaluate and report the advances in nanocomposite membranes prepared by using either different nanoscale fillers or various fabrication methods for OSN applications. Nanoparticles that will be discussed include metal-organic framework, graphene oxide, carbon nanotubes, silica, titanium, gold, zeolite and other fillers. The incorporation of these nanoscale fillers into the polymeric membranes can positively influence the mechanical strength, chemical and thermal stability, hydrophilicity, solute selectivity and solvent permeance. This study may provide helpful insights to develop next-generation of OSN membranes for years to come.  相似文献   

3.
Polyamide/polyacrylonitrile thin‐film‐composite (TFC) nanofiltration (NF) membranes for the separation of oleic acid dissolved in organic solvents (methanol and acetone) were interfacially prepared by the reaction of trimesoyl chloride in an organic phase with an aqueous phase containing piperazine and m‐phenylene diamine. The interfacial reaction was confirmed by an investigation of the attenuated total reflection infrared spectrum. The surface morphology of the polyamide TFC membranes was examined with scanning electron microscopy. The hydrophilic properties of the membrane surfaces were conjectured on the basis of the ζ potential and contact angle. The effects of the monomer concentrations of the monomer blends (aliphatic and aromatic diamines) and drying times on various aspects of membrane performance, such as the solvents (water, alcohols, ketones, and hexane), permeation rates, and organic solute [poly(ethylene glycol) 200 and oleic acid] rejection rates, were investigated. All the membranes showed good solvent resistance. The polar solvent flux for water and methanol was higher than that for a nonpolar solvent (hexane). The membranes gave good rejection rates of oleic acid dissolved in methanol and acetone. The NF membranes were compared with various commercial membranes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2151–2163, 2002  相似文献   

4.
The application of membrane technology, particularly water-based nanofiltration, as a separation process in the chemical industries has increased tremendously in recent years. However, the use of membranes capable of molecular separation in non-aqueous systems (e.g. nanofiltration) is a relatively new and growing application of membrane technology. The main challenge in applying polymeric nanofiltration membranes to non-aqueous systems is that the polymers developed for water-based applications are not suitable. Polyimide is a particularly interesting polymer as it has excellent chemical resistance, and membranes produced from it provide desirable separation properties – i.e. economically viable flux and good separation of nanoscale molecules. Various research works have shown that commercial polyimide organic solvent nanofiltration (OSN) membranes, trademark STARMEM™, 1 are robust and suitable for performing molecular separations. This work will discuss in detail the use of STARMEM™ in a pharmaceutical application. The EIC-OSN process was developed for separating the enantiomers of chiral compounds in pharmaceutical applications. High optical purity (94.9%) of (S)-phenylethanol from rac-phenylethanol was achieved through the use of STARMEM™122. Process simulation of the ideal eutomer-distomer system predicted that the highest theoretical resolvability from this process would be 99.2%. Other application areas of OSN are varied, including purification and fractionation in the natural products industry, homogeneous catalyst recovery, monomer separation from oligomers, etc. Currently, OSN is used in a small number of processes including a very large petrochemical application, but it has the potential to be applied to a wide range of separations across the full spectrum of the chemical industries.  相似文献   

5.
In this study, polysulfone/wood sawdust (PSf/WSD) mixed matrix membrane (MMM) was prepared as a novel substrate layer of thin‐film composite (TFC) membrane in water desalination. The main aim was to evaluate how different amounts of WSD (0‐5 wt%) and PSf concentrations (12‐16 wt%) in the porous substrate affect the properties of the final TFC membranes in the separation of organic and inorganic compounds. Morphological and wettability studies demonstrated that the addition of small amount of WSD (less than or equal to 1 wt%) in the casting solution resulted in more porous but similar hydrophobic substrates, while high loading (greater than or equal to 2 wt%) of WSD not only changed the substrate wettability and morphology but also increased and decreased the swelling and mechanical properties of substrate layer. Therefore, PA layer formed thereon displayed extensively varying film morphology, interfacial properties, and separation performance. Based on approximately stable permeate flux (ASPF) and apparent salt rejection efficiency (ASRE), the best TFC membrane was prepared over the substrate with 12 to 14 wt% of PSf and around 0.5 to 1 wt% of WSD. Although notable improvements in permeate flux were obtained by adding a small amount of sawdust, the results clearly indicate that the salt rejection mechanism of TFC membrane was different from the glycerin rejection mechanism. Furthermore, durability results of TFC membranes showed that in continuous operation for 30 days, TFC‐14/0.5 and TFC‐14/01 have the maximum plateau levels of stable permeate flux and salt rejection among the all TFC membranes.  相似文献   

6.
A new family of functional materials is reported for organic solvent nanofiltration, with excellent chemical stability and high retention of solute molecules. Integrally skinned asymmetric polyaniline (PANI) membranes were fabricated from concentrated solutions of doped PANI by phase inversion. Doped PANI solutions were prepared by adding organic acids directly to PANI dissolved in a mixture of NMP and 4-methyl piperidine before casting. Among the organic acids investigated, maleic acid, phthalic acid, sulfosalicylic acid and camphorsulfonic acid were able to dope PANI without causing gelation. These acids acted as soft templates, creating nanoporosity in the thin skin layer of the asymmetric PANI film. Their removal by alkaline extraction created membranes through which small solvent molecules can pass. After extracting the organic acids, the membranes were thermally crosslinked which conferred excellent solvent stability. These membranes had a molecular weight cut-off (MWCO) in the range of 150–250 g mol−1 in methanol, making them the tightest OSN membranes reported to date. It was found that an increase in crosslinking temperature or time led to a decrease in solvent flux. PANI membranes were found to be resistant to a variety of organic solvents such as ethyl acetate, acetonitrile and acetone. These remarkable membranes have the potential to be used in OSN operations at high temperatures (up to 150 °C), and gave increasing fluxes with increasing temperature while maintaining a high solute rejection.  相似文献   

7.
Selectivity in microemulsion electrokinetic chromatography   总被引:3,自引:0,他引:3  
Microemulsion electrokinetic chromatography (MEEKC) is a most promising separation technique providing good selectivity and high separation efficiency of anionic, cationic as well as neutral solutes. In MEEKC lipophilic organic solvents dispersed as tiny droplets in an aqueous buffer by the use of surfactants provide a pseudo-stationary phase to which the solutes may have an affinity either to the surface or they may even partition into the droplets. When the droplets are charged, typically negatively, they will migrate opposite to the electroosmotic flow and hence separation of neutral solutes may take place. In the present paper focus has been set on how to change selectivity in MEEKC. Changes in the nature of surfactant as well as in pH have been shown to be powerful tools in changing the selectivity. The type of lipophilic organic phase is of less importance for the separation of fairly lipophilic solutes. Also changes in the temperature surrounding the capillary may alter the selectivity.  相似文献   

8.

The chemical stability of polymer membranes, i.e., their ability to preserve the size, shape, and pore structure in contact with aggressive organic solvents, largely determines their separation characteristics in filtration of organic media. Methods for enhancing the stability of porous membranes based on commercial polymers (polysulfone, polyphenylsulfone, polyacrylonitrile) by chemical and/or physical modification are considered. Chemical modification consists in covalent cross-linking of matrix polymer chains; in some cases, cross-linking of macromolecules requires their preliminary functionalization. Physical modification involves blending of a matrix polymer with another polymer. A promising way to stabilize various membranes is combining a matrix polymer with a chemically cross-linked additional polymer, i.e., forming a semi-interpenetrating network.

  相似文献   

9.
Interfacial polymerization (IP) is a powerful technique for fabrication of thin film composite (TFC) membranes. The polymers used most often as support are polysulfone (PS) or polyethersulfone (PES). These supports have limited stability in organic solvents. In this work, microporous polypropylene (PP) flat film and hollow fiber membranes were used as a support to fabricate TFC membranes for nanofiltration by the IP technique. Porous polypropylene membranes can provide substantial chemical, pH, and solvent resistance and are therefore suitable as supports for fabricating TFC membranes functioning as solvent-stable nanofiltration membranes. The surface and the pore interior of polypropylene flat sheet and hollow fiber membranes were hydrophilized first by pre-wetting with acetone followed by oxidation with chromic acid solution. A standard procedure to successfully coat the hydrophilized flat film and hollow fiber membranes was developed next. The monomeric system chosen for IP was poly(ethyleneimine) and isophthaloyl dichloride. The TFC hollow fiber membranes were characterized by nanofiltration of safranin O (MW 351) and brilliant blue R (MW 826) dyes in methanol. Rejection values of 88% and 43% were achieved for brilliant blue R and safranin O, respectively at a transmembrane pressure of 413 kPa in the TFC hollow fiber membranes. Pressure dependences of the solvent flux and solute rejection of the TFC membranes were studied using the modified flat sheet membranes up to a pressure of 965–1241 kPa. Solvent flux increased linearly with an increase in the transmembrane pressure. Solute rejection also increased with an increase in the transmembrane pressure. All modified membranes were also characterized using scanning electron microscopy. Extended-term solvent stability of the fabricated membranes was studied in toluene; the membranes demonstrated substantial solvent stability in toluene.  相似文献   

10.
渗透蒸发研究的现状   总被引:9,自引:0,他引:9  
本文介绍了近年来渗透蒸发膜分离技术在有机溶剂脱水、从污水中回收有机物、有机溶剂混合物分离以及在促进可塑平衡反应中的应用和发展,文章列举了在上述领域中常用的分离膜的性质及分离过程,展示了渗透蒸发的作用。  相似文献   

11.
The two-dimensional Wheatstone bridge resistance analog model for permeation through thin film composite (TFC) membranes proposed by Karode et al. [5] has been extended to also include the cases where the coating layer thickness is of similar magnitude as the pore radius in the support matrix. The effect of the constriction resistance, i.e. the resistance encountered by the permeating species in traveling in a radial direction to find a pore to diffuse through is highlighted by considering three generic types of TFC membranes: (i) TFC membranes where the support has very low surface porosity; (ii) TFC membranes with moderate support layer surface porosity; and (iii) TFC membranes incorporating an intermediate gutter layer between the top coating and the bottom support. The model predictions are compared with experimental data reported in literature and various effects are highlighted by considering a few hypothetical cases. The calculations indicate that PRISM type membranes do not require pore filling in order to achieve a composite selectivity close to that of the support material as the high constriction resistance due to low surface porosity effectively prevents transport along the less permselective pathway. In case of less permeable but highly selective top layers, the constriction resistance can be significantly decreased by the gutter layer concept resulting in higher permeabilities and selectivities controlled by the coating layer. In general, the constriction resistance becomes dominant when the permeability of the top layer is low or when the support surface porosity is low.  相似文献   

12.
Using a surface force apparatus, we have measured the normal forces between mica surfaces across various types of nanoparticles consisting of ZnS cores coated with a monolayer of physisorbed surfactant, dispersed in organic solvents. We focused on the effects of nanoparticle size, shape, and concentration on the force-distance profiles. Forces were exponentially repulsive when the surfactant layers were strongly bound to the nanoparticles and were roughly linear when there was adhesion between the nanoparticle cores, i.e., when the surfactant layers detached from the nanoparticles. In both cases, the range and magnitude of the forces were dependent upon the particle size, shape, and solution concentration. Fine details in the otherwise smooth force-distance profiles indicate specific effects due to particle chemistry and geometry and the existence of first-order disorder-order phase transitions upon confinement. Small amounts of water in the (hydrophobic) organic solvents had dramatic effects on the measured forces. Understanding and controlling the effects of particle shape, size, and concentration and the presence of water (or other surface-active solutes) on particle-particle and particle-surface interactions are important for the processing of nanoparticles into ordered superstructured materials.  相似文献   

13.
赵宁  徐坚 《高分子科学》2016,34(10):1234-1239
Separation of oil/water mixtures, especially for the emulsified oil/water mixtures, is important because of the frequent occurrence of oil spill accidents. Utilizing superwetting porous membrane has become a promising approach to separate either surfactant-free or surfactant-stabilized emulsions. Herein we report a facile and versatile strategy for preparing hydrophobic/under-oil superhydrophobic membranes by coating the skeletons of the membranes with the poly[(3,3,3-trifluoropropyl)methylsiloxane] (PTFPMS) nanoparticles. The obtained membranes could be used to separate various waterin- oil emulsions with high flux and separation efficiency. In addition, owning to the outstanding resistance of PTFPMS to the most organic solvents or oils, the modified membranes exhibited the excellent reusability and the antifouling properties that were critical in the practical applications. Many commercially available membranes can be modified by such a simple method.  相似文献   

14.
Nanofiltration has been attracting great attention in alleviating the global water crisis because of its high efficiency,mild operation,and strong adaptability.Over decades,it remains a challenge to break the upper limit of performance and establish the formation-structureproperty relationship for nanofiltration membranes.This feature article summarizes our recent progress in the preparation of high-performance thin-film composite(TFC)nanofiltration membranes,focusing on the mussel-inspired deposition method and the optimized interfacial polymerization(IP).By accelerating the oxidation of polydopamine and equilibrating the rate of aggregation and deposition processes,the mussel-inspired deposition method realizes the rapid and uniform formation of selective coatings or nanofilms.Diverse deposition systems endow the selective layer with rich chemical structures and easy post-functionalization,highlighting its potential in water treatment.As for optimizing the conventional IP,the rapid polycondensation of amine and acid chloride groups is slowed down to enable the controllability of IP at the water-organic interface.The homogeneity and integrity of the TFC membranes are improved by constructing a uniform reaction platform and introducing a viscous medium to control the amine diffusion,which facilitates the water permeability and promotes the separation efficiency.We have proposed a series of practical strategies for improving TFC membranes and might provide more inspiration for other nanofiltration techniques.  相似文献   

15.
Extensive research has been carried out on functional polymers which are currently playing important roles in various fields such as medicine and engineering. Such functional polymers which respond to various kinds of stimuli are termed 'intelligent materials'. Poly(N-isopropylacrylamide) (PNIPAAm), a temperature-responsive polymer, was utilized as a chromatography column matrix modifier for a novel chromatographic approach in which only aqueous media are used as a mobile phase. The ability of the developed temperature-responsive chromatography system to separate solutes without using an organic solvent is advantageous from the point of view of maintaining the structure and activity of bioactive compounds. Recently, we designed and synthesized a new pH- and temperature-responsive copolymer as a representative of such environment-responsive polymers and grafted it onto aminopropyl silica beads. The products were evaluated as HPLC packing materials for separation systems based on a new concept, according to which the properties of the stationary phase surface are altered by external stimuli such as pH and temperature. This chromatography system utilizing the PNIPAAm copolymer is very useful for the separation of bioactive substances, such as proteins and peptides, because separation in the aqueous mobile phase is controlled solely by changing the temperature. This analytical system reduces organic waste because no organic solvent is used to separate the solutes and can therefore be classified as environmentally friendly. Future medical and pharmaceutical applications are expected.  相似文献   

16.
Porous organic polymers (POPs) with high porosity and tunable functionalities have been widely studied for use in gas separation, catalysis, energy conversion and energy storage. However, the high cost of organic monomers, and the use of toxic solvents and high temperatures during synthesis pose obstacles for large-scale production. Herein, we report the synthesis of imine and aminal-linked POPs using inexpensive diamine and dialdehyde monomers in green solvents. Theoretical calculations and control experiments show that using meta-diamines is crucial for forming aminal linkages and branching porous networks from [2+2] polycondensation reactions. The method demonstrates good generality in that 6 POPs were successfully synthesized from different monomers. Additionally, we scaled up the synthesis in ethanol at room temperature, resulting in the production of POPs in sub-kilogram quantities at a relatively low cost. Proof-of-concept studies demonstrate that the POPs can be used as high-performance sorbents for CO2 separation and as porous substrates for efficient heterogeneous catalysis. This method provides an environmentally friendly and cost-effective approach for large-scale synthesis of various POPs.  相似文献   

17.
Removal of organic contaminants by RO and NF membranes   总被引:4,自引:0,他引:4  
Rejection characteristics of organic and inorganic compounds were examined for six reverse osmosis (RO) membranes and two nanofiltration (NF) membranes that are commercially available. A batch stirred-cell was employed to determine the membrane flux and the solute rejection for solutions at various concentrations and different pH conditions. The results show that for ionic solutes the degree of separation is influenced mainly by electrostatic exclusion, while for organic solutes the removal depends mainly upon the solute radius and molecular structure. In order to provide a better understanding of rejection mechanisms for the RO and NF membranes, the ratio of solute radius (r(i,s)) to effective membrane pore radius (r(p)) was employed to compare rejections. An empirical relation for the dependence of the rejection of organic compounds on the ratio r(i,s)/r(p) is presented. The rejection for organic compounds is over 75% when r(i,s)/r(p) is greater than 0.8. In addition, the rejection of organic compounds is examined using the extended Nernst-Planck equation coupled with a steric hindrance model. The transport of organic solutes is controlled mainly by diffusion for the compounds that have a high r(i,s)/r(p) ratio, while convection is dominant for compounds that have a small r(i,s)/r(p) ratio.  相似文献   

18.
A phenomenological study of solubility has been conducted using a combination of quantitative structure-property relationship (QSPR) and principal component analysis (PCA). A solubility database of 4540 experimental data points was used that utilized available experimental data into a matrix of 154 solvents times 397 solutes. Methodology in which QSPR and PCA are combined was developed to predict the missing values and to fill the data matrix. PCA on the resulting filled matrix, where solutes are observations and solvents are variables, shows 92.55% of coverage with three principal components. The corresponding transposed matrix, in which solvents are observations and solutes are variables, showed 62.96% of coverage with four principal components.  相似文献   

19.
A simple “one‐pot” approach for the preparation of a new vinyl‐functionalized organic–inorganic hybrid monolithic column is described. In this improved method, the hydrolyzed alkoxysilanes of tetramethoxysilane and triethoxyvinylsilane were used as precursors for the synthesis of a silica‐based monolith, while 1‐hexadecene and sodium ethylenesulfonate were used as vinyl functional monomers along with azobisisobutyronitrile as an initiator. The effects of reaction temperature, urea content, and composition of organic monomers on the column properties (e.g. morphology, mechanical stability, and chromatographic performance) were investigated. The monolithic column was used for the separation of neutral solutes by reversed‐phase pressurized capillary. Furthermore, the monolith can separate various aromatic amines, which indicated its excellent cation‐exchange capability and hydrophobic interactions. The baseline separation of the aromatic amines was obtained with a column efficiency of up to 78 000 plates/m.  相似文献   

20.
One-dimensional (1D) nanomaterials have unique applications due to their inherent physical properties. In this study, hexagonally ordered mesoporous silica hybrid anodic alumina membranes (AAM) were synthesized using template-guided synthesis with a number of nonionic n-alkyl-oligo(ethylene oxide), Brij-type (C(x)EO(y)), which are surfactants that have different molecular sizes and characteristics. The hexagonal mesoporous silicas are vertically aligned in the AAM channels with a predominantly columnar orientation. The hollow mesostructured silicas had tunable pore diameters varying from 3.7 to 5.1 nm. In this synthesis protocol, the surfactant molecular natures (corona/core features) are important for the controlled generation of ordered structures throughout AAM channels. The development of ultrafiltration membranes composed of silica mesostructures could be used effectively in separating silver nanoparticles (Ag NPs) in both aqueous and organic solution phases. This would be relevant to the production of well-defined Ag NPs with unique properties. To create a size-exclusive separation system of Ag NPs, we grafted hydrophobic trimethylsilyl (TMS) groups onto the inner pores of the mesoporous silica hybrid AAM. The immobilization of the TMS groups allowed the columnar mesoporous silica inside AAM to retain this inner pore order without distortion during the separation of solution-phase Ag NPs in organic solvents that may cause tortuous-pore membranes. Mesoporous TMS-silicas inside 1D AAM channels were applicable as a size-exclusive separation system to isolate organic solution-phase Ag NPs of uniform morphology and size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号