首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Telomerase is a ribonucleoprotein complex; it uses an internal RNA template to synthesize telomere DNA. Telomerase is active in 90% of cancers and can be used as a diagnostic marker. We have optimized conditions for the extraction from small tissue samples (<0.05 g) of cervical lesions to analyze telomerase activity and selected the optimal concentrations of the tissue extracts. Different concentrations of the extracts were used to determine the presence of possible telomerase inhibitors and Taq-polymerase in the extracts. Using lung and kidney cancer samples it was shown that these conditions are applicable for the estimation of telomerase activity in different cancer types. Many investigations of telomerase activity using different types of TRAP (Telomere Repeat Amplification Protocol) have been performed. The possibility of comparison of TRAP results with radioactive and Sybr green detection remains open. We compared these two types of detection for several samples of cervical intraepithelial neoplasias and conclude that they have similar sensitivities.  相似文献   

2.
Telomerase has been proposed as a selective target for cancer chemotherapy. We established a forward chemical genetics approach using a yeast strain with shortened telomere length. Since this strain rapidly enters cell senescence in the absence of active telomerase, compounds that induce selective growth defects against telomere-shortened yeast could be candidates for drugs acting on telomeres and telomerase. We screened our microbial products library and identified three structurally unrelated antibiotics, chrolactomycin, UCS1025A, and radicicol, as active compounds. Detailed analysis showed that chrolactomycin inhibited human telomerase in a cell-free assay as well as in a cellular assay. Long-term culture of cancer cells with chrolactomycin revealed population-doubling-dependent antiproliferative activity accompanied by telomere shortening. These results suggest that chrolactomycin is a telomerase inhibitor, and that the yeast-based assay is useful for discovering the small molecules acting on human telomerase.  相似文献   

3.
4.
Telomerase Inhibitors: Telomerase is the enzyme responsible for maintaining telomere length and it has activity not observed in normal somatic cells. In contrast, high expression of telomerase is observed in around 85-90% of human tumour cells and therefore telomerase is regarded as a specific target for development of cancer chemotherapeutic agents. There are several types of inhibitor known. For example antisense oligodeoxynucleotides and related compounds which exhibit potent inhibition of telomerase in the picomolar range. In spite of this research there have been no clinical trials of inhibitors to date, and discovery of novel inhibitors will contribute to evaluation of telomerase inhibitors for cancer chemotherapy. Recent developments have highlighted new telomerase inhibitors based on the bisindole unit (i) (S. Sasaki et. al., Bioorg. Med. Chem. Lett., 11, (2001), 583).  相似文献   

5.
Transformation with viral oncogene extends the lifespan of normal cells beyond replicative senescence called M1, but most of them eventually succumb to second crisis called M2 when telomeres become critically short. To acquire an infinite growth capacity, these cells have to overcome M2 crisis, which is known to follow telomerase activation. We have investigated if telomerase expression is required for virus-transformed pre-M2 cells to avert M2 crisis. Human retinal pigment epithelial (RPE) cells were transformed with simian virus 40 large T antigen and a VR3 clone in pre-M2 stage was obtained. Then, VR3 cells were transfected with a telomerase-containing vector and two cell lines that expressed telomerase temporarily or continuously were cloned and designated as ST1 and ST2, respectively. Normal RPE cells went into senescence after 36 population doublings. Although the lifespan was extended in the VR3 clone about 20 times more, it eventually underwent second crisis. The telomere length of VR3 decreased compared to that of normal RPE cells and the decrease continued during subculture. However, the ST1 and ST2 clones that expressed both T antigen and telomerase could avert this crisis. The initial telomere length of ST1 and ST2 was longer than that of normal cells. The ST1 underwent growth arrest again as telomerase expression faded out and elongated telomere was shortened, but the ST2 that maintained telomerase activity and telomere length proliferated continuously. In conclusion, telomerase activation is definitely required to overcome M2 crisis and acquire an infinite lifespan in human somatic epithelial cells and this mechanism is independent from M1 crisis escape in cell immortalization.  相似文献   

6.
The folding of the single-stranded 3' end of the human telomere into G-quadruplex arrangements inhibits the overhang from hybridizing with the RNA template of telomerase and halts telomere maintenance in cancer cells. The ability to thermally stabilize human telomeric DNA as a four-stranded G-quadruplex structure by developing selective small molecule compounds is a therapeutic path to regulating telomerase activity and thereby selectively inhibit cancer cell growth. The development of compounds with the necessary selectivity and affinity to target parallel-stranded G-quadruplex structures has proved particularly challenging to date, relying heavily upon limited structural data. We report here on a structure-based approach to the design of quadruplex-binding ligands to enhance affinity and selectivity for human telomeric DNA. Crystal structures have been determined of complexes between a 22-mer intramolecular human telomeric quadruplex and two potent tetra-substituted naphthalene diimide compounds, functionalized with positively charged N-methyl-piperazine side-chains. These compounds promote parallel-stranded quadruplex topology, binding exclusively to the 3' surface of each quadruplex. There are significant differences between the complexes in terms of ligand mobility and in the interactions with quadruplex grooves. One of the two ligands is markedly less mobile in the crystal complex and is more quadruplex-stabilizing, forming multiple electrostatic/hydrogen bond contacts with quadruplex phosphate groups. The data presented here provides a structural rationale for the biophysical (effects on quadruplex thermal stabilization) and biological data (inhibition of proliferation in cancer cell lines and evidence of in vivo antitumor activity) on compounds in this series and, thus, for the concept of telomere targeting with DNA quadruplex-binding small molecules.  相似文献   

7.
Inhibition of telomerase activity through stabilizing telomere G-quadruplex with small chemical ligands is emerging as a novel strategy for cancer therapy. For the large number of ligands that have been reported to inhibit telomerase activity, it is difficult to validate the contribution of G-quadruplex stabilization to the overall inhibition. Using a modified telomere repeat amplification protocol (TRAP) method to differentiate the telomere G-quadruplex independent effect from dependent ones, we analyzed several ligands that have high affinity and/or selectivity to telomere G-quadruplex. Our results show that these ligands effectively inhibited telomerase activity in the absence of telomere G-quadruplex. The expected G-quadruplex-dependent inhibition was only obvious for the cationic ligands at low K(+) concentration, but it dramatically decreased at physiological concentration of K(+). These observations demonstrate that the ligands are much more than G-quadruplex stabilizers with a strong G-quadruplex-irrelevant off-target effect. They inhibit telomerase via multiple pathways in which stabilization of telomere G-quadruplex may only make a minor or neglectable contribution under physiologically relevant conditions depending on the stability of telomere G-quadruplex under ligand-free conditions.  相似文献   

8.
The G-rich strand of human telomeric DNA can fold into a four-stranded structure called G-quadruplex and inhibit telomerase activity that is expressed in 85-90% tumor cells. For this reason, telomere quadruplex is emerging as a potential therapeutic target for cancer. Information on the structure of the quadruplex in the physiological environment is important for structure-based drug design targeting the quadruplex. Recent studies have raised significant controversy regarding the exact structure of the quadruplex formed by human telomeric DNA in a physiological relevant environment. Studies on the crystal prepared in K+ solution revealed a distinct propeller-shaped parallel-stranded conformation. However, many later works failed to confirm such structure in physiological K+ solution but rather led to the identification of a different hybrid-type mixed parallel/antiparallel quadruplex. Here we demonstrate that human telomere DNA adopts a parallel-stranded conformation in physiological K+ solution under molecular crowding conditions created by PEG. At the concentration of 40% (w/v), PEG induced complete structural conversion to a parallel-stranded G-quadruplex. We also show that the quadruplex formed under such a condition has unusual stability and significant negative impact on telomerase processivity. Since the environment inside cells is molecularly crowded, our results obtained under the cell mimicking condition suggest that the parallel-stranded quadruplex may be the more favored structure under physiological conditions, and drug design targeting the human telomeric quadruplex should take this into consideration.  相似文献   

9.
Telomeres are the ends of the linear chromosomes of eukaryotes and consist of tandem GT-rich repeats in telomere sequence i.e. 500-3000 repeats of 5'-TTAGGG-3' in human somatic cells, which are shortened gradually with age. The G-rich overhang of telomere sequence can adopt different intramolecular fold-backs and tetra-stranded DNA structures, in vitro, which inhibit telomerase activity. In this report, DNA binding agents to telomere sequence were studied novel therapeutic possibility to destabilize telomeric DNA sequences. Oligonucleotides containing the guanine repeats in human telomere sequence were synthesized and used for screening potential antitumor drugs. Telomeric DNA sequence was characterized using spectral measurements and CD spectroscopy. CD spectrum indicated that the double-stranded telomeric DNA is in a right-handed conformation. Polyacrylamide gel electrophoresis was performed for binding behaviors of antitumor compounds with telomeric DNA sequence. Drugs interacted with DNA sequence caused changes in the electrophoretic mobility and band intensity of the gels. Depending on the binding mode of the anticancer drugs, telomeric DNA sequence was differently recognized and the efficiency of cleavage of DNA varies in the bleomycin-treated samples under different conditions. DNA cleavage occurred at about 1% by the increments of 1 micromM bleomycin-Fe(III). These results imply that the stability of human telomere sequence is important in conjunction with the cancer treatment and aging process.  相似文献   

10.
孙丽芳  杨海堂  卫伟 《分析测试学报》2019,38(10):1280-1284
端粒酶是一种核蛋白逆转录酶,能以自身的RNA为模板添加重复序列(TTAGGG)n至染色体末端,稳定端粒长度。端粒酶在85%~90%的癌细胞中处于激活状态,已经引起了人们的广泛关注,成为肿瘤诊断和临床治疗的重要突破口。因此,准确、高效地测定端粒酶活性具有重要意义。近年来,许多灵敏、准确的体外或原位检测技术在端粒酶活性检测方面得到了发展。该文综述了近年来端粒酶活性检测的最新进展,并对其发展趋势进行了展望。  相似文献   

11.
Xu Y 《Chemical Society reviews》2011,40(5):2719-2740
Telomeres are present at the ends of all eukaryotic chromosomes. Human telomeres play an important role in critical processes underlying genome stability, cancer, and aging, and their importance was recognized via the award of the 2009 Nobel Prize in Physiology or Medicine. Chemistry has made vast and almost unparalleled contributions to telomere biology. This critical review highlights the contributions of chemistry in human telomeres and summarizes the significant development of human telomere biology. First, I provide an overview of the advances in understanding of the structures and functions of human telomeres. Second, I focus on the current efforts on developing various chemical approaches to targeting human telomeres and telomerase for the treatment of cancer. Third, studies on a newly discovered telomeric repeat-containing RNA are discussed in detail. Last, future challenges in the field are outlined, including perspectives of both chemistry and biology (412 references).  相似文献   

12.
Telomere length dysfunction is involved in the generation of genomic rearrangements that drive progression to malignancy. A set of serological markers for telomere dysfunction, namely chitinase and N-acetylglucosaminidase (NAG), DNA damage, and tissue alteration of p53 have been identified. The probability that genomic damage, accumulation of reactive oxygen species, and shorter telomeres may be related to the onset and advancement of gastrointestinal (GI) tumors. A total of 40 patients with GI tumors and 20 healthy controls with matched age and sex were included. Estimation of serum chitinase, NAG, lipid peroxide (LPER), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase by colorimetric methods, and p53 by ELISA were assessed. Related clinicopathological features were determined. Serological chitinase, NO, LPER, and p53 were significantly increased, SOD was significantly decreased (p ? 0.001 for each) in GI tumor patients compared with controls and correlated significantly with age. There was a significant correlation between telomere dysfunction indices, p53, oxidative stress indices, and malignant stages of GI cancer patients. Moreover, a significant difference in the mean serum levels of indices between control, malignant, and benign subjects was found. Accordingly, these biomarkers play an important role in the pathogenesis of GI cancer and their estimation may predict the GI tumor behavior.  相似文献   

13.
Repair of DNA damage is essential for the maintenance of the integrity and transmission of the genome in development and reproduction. Telomeres are nucleoprotein structures which protect the ends of (linear) eukaryotic chromosomes. Telomere dysfunction results in loss of this protection and the telomeres being recognised as DNA damage by the cellular DNA Damage Repair and Response (DDR) machinery, leading to senescence or cell death. Telomeric homeostasis is thus tightly controlled and many specific and non-specific proteins are involved in its regulation. Among these, DNA damage and Repair proteins contribute both to the recognition of telomere dysfunction and more surprisingly, are directly implicated in telomere homeostasis itself. Plants offer a great opportunity to study these mechanisms due to the fact that many key DNA repair and recombination proteins are non-essential in plants, in contrast to vertebrates. In the following text, after a brief summary of the current state of knowledge on telomere-specific proteins in plants, we review the DDR processes and the related proteins implicated in plant telomere stability. We focus specifically on telomere signalling and on recombination events induced by unprotected telomeres, at the origin of genome rearrangements and instability when telomere function is affected.  相似文献   

14.
Telomeric DNA is a potential selective target for cancer therapy since the tumour-associated enzyme telomerase regulates telomere maintenance in most cancer cells. The 3′ single-stranded ends of telomeric DNA can be folded into quadruplex structures by appropriate small molecules. We describe the preparation of a new class of 2,7-disubstituted 10H-indolo[3,2-b]quinolines with enhanced selectivity for the stabilisation of quadruplex DNA compared to duplex DNA, and also the preparation of a key intermediate for the synthesis of trisubstituted quindolines.  相似文献   

15.
Zhou X  Xing D 《Chemical Society reviews》2012,41(13):4643-4656
Human telomerase is a ribonucleoprotein complex that functions as a telomere terminal transferase by adding multiple TTAGGG hexamer repeats using its integral RNA as the template. There is a very strong association between telomerase activity and malignancy in nearly all types of cancer, suggesting that telomerase could be used not only as a diagnostic and prognostic marker but also as a therapeutic target for managing cancer. The significant progress in biomedical telomerase research has necessitated the development of new bioanalytical methods for the rapid, sensitive, and reliable detection of telomerase activity in a particular cell or clinical tissue and body fluids. In this review, we highlight some of the latest methods for identifying telomerase activity and inhibition and discuss some of the challenges for designing innovative telomerase assays. We also summarise the current technologies and speculate on future directions for telomerase testing.  相似文献   

16.
Ponsot E  Kadi F 《Electrophoresis》2008,29(2):542-544
Telomere length is an important measure of cell and tissue regenerative capacities. The mean telomere length is classically used as global indicator of a tissue telomere length. In skeletal muscle, which is made of postmitotic myonuclei and satellite cells (muscle stem cells), minimum telomere length is also used to assess the telomere length of satellite cells and newly incorporated myonuclei. At present, the estimation of the method reproducibility during the assessment of mean and minimum telomere length using Southern blot analysis has never been documented. The aim of this report is to describe a signal modelization for improved precision of assessment of minimum and mean telomere lengths and to document the method reproducibility. Telomeres are assessed using a Southern technique where the gel is directly hybridized with the specific probe without the membrane-transferring step in order to prevent telomeric low signal loss. We found that the improved signal analysis for determination of telomere length is associated with coefficients of variation ranging from 1.37 to 4.29% for the mean telomeric restriction fragment (TRF) length and from 2.04 to 4.95% for the minimum TRF length. Improved method reproducibility would allow saving time and biological material as duplicate and triplicate measurement of the same sample is no longer required.  相似文献   

17.
人体端粒由富含鸟嘌呤(G)的DNA重复序列组成,该序列在一定的条件下可以形成G-四链体DNA的结构.小分子化合物诱导该结构的形成并使之稳定,不但可以抑制端粒酶的活性或降低癌基因的转录表达而达到抗肿瘤的目的,还可以作为G-四链体DNA的探针,辅助G-四链体DNA生物功能的研究及与之相关疾病的诊断.因此,G-四链体DNA稳定剂的设计是近年来化学生物学的重要前沿领域之一.到目前为止,G-四链体DNA稳定剂主要可分为有机小分子化合物和金属配合物.本文重点综述这两方面特别是后者的最新研究进展.  相似文献   

18.
Telomerase is a potential cancer marker. We developed a new and robust telomerase activity assay which combines the modified telomere repeat amplification protocol (TRAP) with magnetic beads-based electrochemiluminescence (ECL) detection. The high performance of this assay is related to the determination of telomerase activity from single cell levels, and ECL intensity is linear over the range of 1–1000 HeLa cell equivalents. The proposed telomerase assay offers a highly cost- and time-effective alternative to presently available telomerase assays, which are limited by tedious and complicated post-PCR detection.  相似文献   

19.
Although the telomeric repeat amplification protocol (TRAP) has served as a powerful assay for detecting telomerase activity, its use has been significantly limited when performed directly in complex, interferant-laced samples. In this work, we report a modification of the TRAP assay that allows the detection of high-fidelity amplification of telomerase products directly from concentrated cell lysates. Briefly, we covalently attached 12 nm gold nanoparticles (AuNPs) to the telomere strand (TS) primer, which is used as a substrate for telomerase elongation. These TS-modified AuNPs significantly reduce polymerase chain reaction (PCR) artifacts (such as primer dimers) and improve the yield of amplified telomerase products relative to the traditional TRAP assay when amplification is performed in concentrated cell lysates. Specifically, because the TS-modified AuNPs eliminate most of the primer-dimer artifacts normally visible at the same position as the shortest amplified telomerase PCR product apparent on agarose gels, the AuNP-modified TRAP assay exhibits excellent sensitivity. Consequently, we observed a 10-fold increase in sensitivity for cancer cells diluted 1000-fold with somatic cells. It thus appears that the use of AuNP-modified primers significantly improves the sensitivity and specificity of the traditional TRAP assay and may be an effective method by which PCR can be performed directly in concentrated cell lysates.  相似文献   

20.
We investigated the effects of nanosecond pulsed electric fields (nsPEF) on three human cell lines and demonstrated cell shrinkage, breakdown of the cytoskeleton, nuclear membrane and chromosomal telomere damage. There was a differential response between cell types coinciding with cell survival. Jurkat cells showed cytoskeleton, nuclear membrane and telomere damage that severely impacted cell survival compared to two adherent cell lines. Interestingly, disruption of the actin cytoskeleton in adherent cells prior to nsPEF exposure significantly reduced cell survival. We conclude that nsPEF applications are able to induce damage to the cytoskeleton and nuclear membrane. Telomere sequences, regions that tether and stabilize DNA to the nuclear membrane, are severely compromised as measured by a pan-telomere probe. Internal pore formation following nsPEF applications has been described as a factor in induced cell death. Here we suggest that nsPEF induced physical changes to the cell in addition to pore formation need to be considered as an alternative method of cell death. We suggest nsPEF electrochemical induced depolymerization of actin filaments may account for cytoskeleton and nuclear membrane anomalies leading to sensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号