首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
一种新型室温固化、耐高温环氧树脂体系及其性能   总被引:2,自引:1,他引:1  
采用1-己基-3-甲基咪唑四氯化铁盐([C6mim]FeCl4)与混合胺复配室温(20 ℃)固化双酚A型环氧树脂E-51,并与其它脂肪胺类室温固化E-51体系在力学性能、热性能、耐老化性能方面的数据进行了比较,同时分析了[C6mim]FeCl4不同添加量对固化体系性能的影响,结果显示:[C6mim]FeCl4/混合胺复配室温固化E-51体系的室温拉伸强度可达90 MPa,高温(120 ℃)下也保持了良好的力学性能,热失重(5%)分解温度为310 ℃,200 ℃老化7 d后,拉伸强度为28 MPa,是一种可在高温下使用的新型环氧树脂室温固化体系。  相似文献   

2.
1-烷基-3-甲基咪唑系列室温离子液体表面张力的研究   总被引:5,自引:0,他引:5  
王建英  赵风云  刘玉敏  胡永琪 《化学学报》2007,65(15):1443-1448
合成了系列1-烷基-3-甲基咪唑四氟硼酸盐([C2~7mim]BF4)及六氟磷酸盐([C4~7mim]PF6)室温离子液体, 并通过核磁氢谱、红外光谱、质谱等手段对其进行了结构表征; 采用Wilhelmy白金板法, 在293~338 K范围内测定了离子液体的表面张力, 测试结果显示, 同类离子液体表面张力γ随温度的升高而线性下降, 同种离子液体的表面张力呈现出较宽的变化范围, 如293 K下, 表面张力值从[C2mim]BF4的50.4 mJ/m2到[C7mim]BF4的36.1 mJ/m2. 最后对离子液体的表面性能进行了讨论.  相似文献   

3.
室温离子液体对氨基苯磺酸的萃取性能   总被引:8,自引:0,他引:8  
樊静  范云场  王键吉  崔凤灵 《化学学报》2006,64(14):1495-1499
系统研究了[C4mim][PF6], [C6mim][PF6], [C6mim][BF4]和[C8mim][BF4]室温离子液体对间氨基苯磺酸、对氨基苯磺酸稀水溶液的萃取平衡. 实验结果表明: 萃取温度和相体积比的变化对分配比影响不大; 水相pH值对萃取平衡有较大的影响, 氨基苯磺酸在离子液体/水体系中的分配比在pH=4.2时达到最大值; 水相中CaCl2或Na2SO4的存在能较大幅度地提高氨基苯磺酸的分配比; 离子液体的阴离子的性质对分配比有显著的影响, 阴离子为[BF4]的离子液体对氨基苯磺酸的萃取能力大于阴离子为[PF6]的离子液体; 咪唑环上烷基链的长度也对萃取效果有一定的影响. 在所研究的离子液体中, [C6mim][BF4]和[C8mim][BF4]对氨基苯磺酸有较好的萃取性能, 且萃取相中的氨基苯磺酸可回收利用, 离子液体也可循环使用.  相似文献   

4.
用中和法合成了氨基酸离子液体(AAIL)1-己基-3-甲基苏氨酸盐[C6mim][Thr],并用核磁共振氢谱(1H NMR)和核磁共振碳谱(13C NMR)进行了表征。以苯甲酸为参考物质,用恒温热重法确定了AAIL[C6mim][Thr]的蒸汽压和在平均温度下(Tav= 438.15 K)的蒸发焓(ΔglHm? (Tav) =128.5 ± 6.0 kJ·mol-1)。利用Verevkin等人提出的方法计算得到AAIL[C6mim][Thr]气态和液态的恒压热容差(ΔglCpm? = -70.8 J·K-1·mol-1),进而计算了不同温度的蒸发焓,其中参考温度(298.15 K)下的蒸发焓ΔglHm? (298.15 K) = 138.4 kJ·mol-1,只比应用我们提出的蒸发焓理论模型估算值大1.6 kJ·mol-1,小于恒温热重法的实验误差3.0 kJ·mol-1,说明这个蒸发焓的理论模型有一定的合理性。借助Clausius-Clapeyron方程估算了AAIL[C6mim][Thr]的假想的正常沸点Tb= 522.07 K,以及沸点的蒸发熵ΔglSm? (Tb) = 228.5 J·K-1·mol-1,进一步得到了不同温度的蒸发熵和蒸发自由能ΔglGm? (T),其结果表明蒸发自由能随着温度的上升而减小,达到沸点温度Tb时变为零,而蒸发熵则随着温度上升而增大,是AAIL[C6mim][Thr]蒸发过程的驱动力。  相似文献   

5.
离子液体型表面活性剂研究   总被引:2,自引:0,他引:2  
易封萍  李积宗  陈斌 《化学学报》2008,66(2):239-244
以1-甲基咪唑为原料, 制备了6个常规离子液体: 1-正丁基-3-甲基咪唑四氟硼酸盐及六氟磷酸盐(简称[bmim][BF4]及[bmim][PF6])、1-正己基-3-甲基咪唑四氟硼酸盐及六氟磷酸盐(简称[hmim][BF4]及[hmim][PF6])、1-正十六烷基-3-甲基咪唑四氟硼酸盐及六氟磷酸盐(简称[C16mim][BF4]及[C16mim][PF6])和4个功能化离子液体: 1-(2-羟乙基)-3-甲基咪唑四氟硼酸盐及六氟磷酸盐(简称[2-hemim][BF4]及[2-hemim][PF6])、1-乙氧羰基甲基-3-甲基咪唑四氟硼酸盐及六氟磷酸盐(简称[eocmmim][BF4]及[eocmmim][PF6]). 研究了这两类离子液体的一些物理性能, 旨在挖掘离子液体在香料香精化妆品工业中的应用价值. 分别检测了它们与一般溶剂的互溶性, 并测定了它们的表面张力和发泡性能, 实验结果表明, 仅[C16mim][BF4]和[C16mim][PF6]具有发泡性能, 发泡力分别为68和120 mm.  相似文献   

6.
主要考察了辛基(苯基)-N, N-二异丁基胺甲酰基甲基氧化膦(CMPO)在1-乙基-3-甲基咪唑双三氟甲基磺酰胺酸盐([C2mim][NTf2])中的γ辐解行为,同时考察辐射对CMPO/[C2mim][NTf2]萃取能力的影响。通过超高效液相色谱-四极杆飞行时间质谱联用仪(UPLC/Q-TOF-MS)进行定量分析、辐解产物认定以及产物半定量分析。CMPO/正十二烷作为对比条件进行了相同研究。结果表明:CMPO在[C2mim][NTf2]中的辐解率低于其在正十二烷中,并且辐解路径不同。在正十二烷体系中,CMPO主要发生C―P、C―N键的断链,而在离子液体体系中CMPO主要发生异丁基脱除反应,并与[C2mim]、·CF3等离子液体产生的自由基发生取代反应。综合辐解研究结果,我们提出CMPO/[C2mim][NTf2]的辐解路径,这加深了CMPO在离子液体中辐解机理的认识。最后,通过萃取实验发现,当硝酸浓度为0.01 mol·L-1,辐照剂量为800 kGy时,CMPO/[C2mim][NTf2]对Eu3+的萃取率依旧达到99%以上。  相似文献   

7.
王晓伟  陈莎 《化学学报》2014,72(11):1147-1151
本研究采用1-辛基-3-甲基咪唑离子液体([C8MIM]PF6)建立了水中Hg2+的循环去除方法. 首先使用[C8MIM]PF6萃取水中Hg2+, 随后通过甲酸的还原反应, 去除萃取到[C8MIM]PF6中的Hg2+, 进而实现[C8MIM]PF6的回收与循环使用. 本研究优化了萃取与还原去除条件, 考察了最佳条件下[C8MIM]PF6的循环使用能力. 结果表明, 50 mL水中加入1 mL[C8MIM]PF6同时加入0.2 mL 1-甲基咪唑, 50 ℃、220 r/min震荡2 h, 对Hg2+的萃取效率接近100%. 随后在离子液体中加入4 mL, 40%甲酸溶液, 50 ℃下220 r/min震荡30 min, 可以将[C8MIM]PF6中60%~70%的Hg2+还原去除. 采用这一方式对水中Hg2+进行循环萃取, 在9次萃取中,[C8MIM]PF6对Hg2+的去除效率保持在83%~98%. 因此, 本方法不仅实现[C8MIM]PF6对水中Hg2+的去除, 同时实现了[C8MIM]PF6的回收与循环使用, 避免了[C8MIM]PF6过度使用所带来的环境问题.  相似文献   

8.
用中和法合成了氨基酸离子液体1-乙基-3-甲基咪唑丙氨酸([C2mim][Ala]),并利用恒温环境的溶解反应热量计,在(288.15±0.01) K-(308.15±0.01) K温度范围内每隔5 K,测定不同质量摩尔浓度离子液体在水中的溶解焓(ΔsolHmθ).根据Archer的方法,通过线性拟合得到了该离子液体的标准摩尔溶解焓(Δsol),并计算了其相对表观摩尔溶解焓(ΦL).在298.15 K下,根据Glasser经验方法得到了格子能UPOT = 566 kJ·mol-1,并计算了其阴阳离子水化焓值(ΔH+ + ΔH-) = -620 kJ·mol-1及阴离子水化焓ΔH-([Ala]-) = -387 kJ·mol-1.此外,估算了[C2mim][Ala]水溶液的热容(Cp(sol))和表观摩尔热容(ΦCp).  相似文献   

9.
丙氨酸离子液体[C4mim][Ala]的热化学性质   总被引:2,自引:1,他引:1  
在298.15 K下利用恒温环境溶解热量计测定了一系列含有已知微量水的1-丁基-3-甲基咪唑丙氨酸盐([C4mim][Ala])离子液体(IL)不同浓度样品的摩尔溶解焓. 借助Debye-Hückel极限项, 用外推法确定了不同含水量的[C4mim][Ala]样品的标准摩尔溶解焓[ΔsHm0(wc)]. 随着样品中水含量的增加, ΔsHm0(wc)的绝对值下降, 将ΔsHm0(wc)对含水量作图得到很好的直线, 其截距ΔsHm0(pure IL)=-60.74 kJ/mol, 可看作是不含水的[C4mim][Ala]标准摩尔溶解焓的估算值. 利用精密氧弹热量计测定了[C4mim][Ala]的燃烧热, 计算得到其标准摩尔生成焓ΔfHm0=(-675±11) kJ/mol.  相似文献   

10.
林国强  郭广忠 《化学学报》1980,38(6):610-613
顺-9-十四碳烯-1-醇乙酸酯(1)是鳞翅目许多昆虫的性信息素或其组分之一[1]。已报道的化合物1的合成方法是采取C10+C4或C9+C5偶联原则[2]。本文报道另一条合成路线(图1),采取C8+C6原则,以1,8-辛二醇(2)为原料,经过ω-氯代辛醇(3)得2-(8'-氯辛烷-1-氧基)四氢吡喃(4)[2d],卤代物4与己炔-1(5)[3]的锂盐缩合得炔化物6,然后以Lindlar催化剂[4]进行部分氢化,粗产品7无需分离可直接去保护基并乙酞化得产物1,五步的总得率约40%.  相似文献   

11.
制备了V取代的磷钼酸H3+xPMo12-xVxO40x=0,1,2)及1-丁基-3-甲基咪唑溴盐离子液体([C4mim]Br),并采用离子交换的方法制备了系列杂化材料([C4mim]3+xPMo12-xVxO40,x=0,1,2);采用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、紫外-可见漫反射光谱(UV-Vis DRS)对所制备样品进行了表征;以H2O2为氧化剂,考察了所得样品催化苯羟基化制苯酚的活性。结果表明,和相应的离子液体及杂多酸相比,杂化材料的催化活性得到了很大的提高,尤其是催化剂[C4mim]5PMo10V2O40,在优化后的条件下,苯的转化率可达到21%,苯酚的选择性在99%以上。而且,该催化剂具有很好的可重复使用性,连续使用五次后,苯的转化率和苯酚的选择性没有明显降低。  相似文献   

12.
New lanthanide metal-organic framework(MOF) nano/microrods, [C4mim]Cl-Eu-MOF, [C8mim]Cl-Eu- MOF and [C12mim]Cl-Eu-MOF, were conveniently synthesized via an ionic liquid-assisted hydrothermal method and characterized by means of powder X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), thermogravimetric analysis(TG) and transmission electron microscopy(TEM). The obtained nano/microrods with low surface areas were efficient for the removal of Congo red(CR) from aqueous solutions. Under the optimum conditions, [C4mim]Cl-Eu-MOF with a specific surface area of 5.1 m2/g exhibited an ultrahigh adsorption capacity of 2606 mg/g toward CR. Notably, the adsorption efficiency of [C4mim]Cl-Eu-MOF for CR via nano/microscale stacking can be directly demonstrated by TEM. In-depth understanding of CR removal by [C4mim]Cl-Eu-MOF nano/microrods was also supported by FTIR, Raman spectroscopy and zeta potential analyses.  相似文献   

13.
Phase behavior and extraction ability of aqueous two-phase systems(ATPs) consisting of ionic liquids(ILs), Cs2CO3 and water were investigated in this paper. Four kinds of ionic liquids, namely, 1-amyl-3-methylimidazolium bromide([C5mim]Br), 1-hexyl-3-methylimidazolium bromide([C6mim]Br), 1-heptyl-3-methylimidazolium bromide ([C7mim]Br) and 1-octyl-3-methylimidazolium bromide([C8mim]Br), were examined to discuss the influence of alkyl groups. Binodal curves and tie-lines at 288.15, 298.15 and 308.15 K were obtained. The partitioning behavior for L-tryptophan in such ATPs was further investigated. The effect of temperature, pH, Cs2CO3 concentration and the structure of ionic liquids on the partitioning were discussed in detail.  相似文献   

14.
郭一江  陈庆德  沈兴海 《应用化学》2019,36(10):1186-1193
合成了新型离子液体1-烷基-3-甲基咪唑苯甲酰基三氟硼酸盐[Cnmim][BTB](n=4,6,8),并通过NMR、差热、热重等方法研究了其基础物化性质。 结果发现,3种离子液体的分解温度在200 ℃左右;随着阳离子碳链的增长,离子液体的粘度、熔点逐渐升高,并从亲水性变为疏水性。 尤其是疏水性的[C6mim][BTB]和[C8mim][BTB]在与水长时间的混合中表现出较好的稳定性,基本解决了四氟硼酸盐离子液体亲水性强、$BF^{-}_{4}$易水解的缺点,有望用于乏燃料后处理并提高临界安全。  相似文献   

15.
以三苯胺为单体, 无水三氯化铁为催化剂, 二甲醇缩甲醛为外交联剂, 通过机械球磨不同比例的三苯胺、 三氯化铁和二甲醇缩甲醛, 合成了PAF-106s(PAF-106a~PAF-106c, PAF: porous aromatic framework). 红外光谱、 元素分析、 X射线光电子能谱和固体核磁共振波谱等表征结果证明发生了聚合反应. 氮气吸附结果表明, 三苯胺、 三氯化铁和二甲醇缩甲醛的比例影响PAF-106s的多孔性能. 三氯化铁和三苯胺摩尔比从3∶1增加到12∶1时, PAF-106c的BET比表面积从PAF-106a的135 m2/g增加到280 m2/g. 引入二甲醇缩甲醛后, PAF- 106d~PAF-106g的BET比表面积随三氯化铁和二甲醇缩甲醛摩尔比的增加而逐渐降低. 在273和298 K下, 测试了PAF-106c的C2烃吸附性能, 并采用理想吸附溶液理论计算了C2H2/C2H4和C2H6/C2H4分离比.  相似文献   

16.
The structures of ionic liquids (ILs) based on 1-alkyl-3-methylimidazolium chloride [Cnmim]Cl (n = 2, 4, 6), (1-ethyl-3-methylimidazolium chloride [C2mim]Cl, 1-butyl-3-methylimidazolium chloride [C4mim]Cl, and 1-hexyl-3-methylimidazolium chloride [C6mim]Cl) were elucidated by 1H NMR and 13C NMR experiments. The vaporization characteristics of these ILs were studied by thermogravimetric analysis. Dynamic and isothermal thermogravimetric experiments were conducted in this study. The purpose of the dynamic experiments was to determine the initial decomposition temperature of the experimental sample and the temperature range for the isothermal thermogravimetric experiments. The purpose of the isothermal experiments was to record the mass dependence of the sample on time in the experimental temperature range. The Langmuir equation and Clausius-Clapeyron equation were used to fit the experimental data and obtain the vaporization enthalpies of these ILs at the average temperature within the experimental temperature range. However, in order to expand the applicability of the estimated values and to compare them with the literature data, the vaporization enthalpy ΔHvap(Tav) measured at the average temperature was converted into vaporization enthalpy ΔHvap(298) at ambient temperature. The difference between the heat capacities of the ILs in the gaseous and liquid states at constant pressure, ΔlgCpmө proposed by Verevkin, was used in this conversion process. The experimental data for substance density and surface tension at other temperatures were obtained by referring to the literature. In addition, the data for density and surface tension at T = 298.15 K were obtained by applying the extrapolation method to the literature values for other temperatures. The vaporization enthalpy of the 1-octyl-3-methylimidazolium chloride IL [C8mim]Cl was estimated by using the new vaporization model we had proposed in our previous work and compared with the reference value. The estimated value for [C8mim]Cl was on the same order of magnitude as the reference value. We compared the vaporization enthalpies in the present study with those for the carboxylic acid imidazolium and amino acid imidazolium ILs ([Cnmim]Pro (n = 2-6) and [Cnmim]Thr (n = 2-6), respectively in our previous work. The results revealed that a change in the anion type affects the vaporization enthalpy of the ILs in the order amino acid imidazolium > carboxylic acid imidazolium > halogen imidazolium, when the cation is the same. Considering the structural differences between the three kinds of ILs, the abovementioned order may be related to the intermolecular hydrogen bonds. There were no intermolecular hydrogen bonds in the [Cnmim]Cl (n = 2, 4, 6) ILs studied here. Therefore, the vaporization enthalpy of [Cnmim]Cl (n = 2, 4, 6) was the lowest among the three kinds of ILs considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号