首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 Visualization techniques are employed to contribute to the understanding of the mechanisms responsible for heat and mass flow between the water basin and the condensing cover inside a shallow solar still. Laser sheets and tracers were employed to record images, where the dominant nature of convection in cell patterns was observed. Received: 1 February 1997/Accepted: 2 February 1998  相似文献   

2.
李岩  朱克勤 《力学与实践》2005,27(4):59-61,64
为研究交通流相变过程问题,对一维交通流进行元胞自动机模拟,进行截面车流率数据提取,并将数据经过离散的傅里叶变换进行能量谱分析.研究结果发现:在阻塞相,系统周期即为因采用周期边界条件而形成的交通激波周期;在高密度区所对应的同步交通流状态中,系统中仍然存在着周期性波动,该周期明显异于交通激波周期,因而其形成原因不能简单归结为周期边界条件的影响;在低密度区对应的自由流状态下,没有此类波动存在.  相似文献   

3.
《力学与实践》2019,41(3):288
深水浅层的压实程度低、结构薄弱,其破坏规律是深水浅层相关问题研究中的关键点之一。目前修正的剑桥模型已经应用于深水浅层的各类研究中,但是在深水浅层的井壁稳定问题中,深水浅层往往仍然被认为是理想弹塑性材料。将井眼周围地层分为3个区域:弹性区、流动区、塑性区。弹性区,地层为线弹性状态;流动区,地层服从修正的剑桥模型及小变形理论;塑性区,地层服从摩尔库伦准则。对各个区域的应力分布进行了求解,并在求解的基础上,结合超级孔隙压力建立了深水浅层的井壁稳定分析模型。通过实例运算,该井壁稳定模型的可靠性得到了验证。  相似文献   

4.
The phenomenon of roll-waves occurs when shallow water flows down open inclined channels. This flow is described by the Saint Venant’s equations with a friction term due to Chezy. In the case of a flat bottom, their existence (as entropic and periodic travelling waves) follows from a classical work due to DRESSLER [6]. The aim of this paper is to prove the existence of roll-waves when the bottom is modulated by a small periodic perturbation. Following JIN and KATSOULAKIS [15], we first compute a Burgers-type equation which possesses “pulsating” roll-waves (the wave speed oscillates around an average velocity). We prove, in a mathematically rigorous fashion, the existence of these solutions.  相似文献   

5.
The use of multigrid methods in complex fluid flow problems is still under development. In this paper a full multigrid procedure has been incorporated in a finite volume solution for predicting fully developed fluid flow in a streamwise periodic geometry. Steady computations in two-dimensional body fitted co-ordinates have shown considerable savings in computation time by this multigrid method.  相似文献   

6.
A simple method is proposed for treating curved or irregular boundaries in Cartesian grid shallow flow models. It directly evaluates fictional values in ‘ghost’ cells adjacent to boundary cells and requires no interpolation or generation of cut cells. The boundary treatment is implemented in a dynamically adaptive quadtree grid‐based solver of the hyperbolic shallow water equations and validated against several test cases with analytical or alternative numerical solutions. The method is easy to code, accurate, and demonstrably effective in dealing with irregular computational domains in shallow flow simulations. Results are presented for still water in a basin of complicated geometry, steady hydraulic jump in an open channel with a converging sidewall, wind‐induced circulation in a circular shallow lake, and shock wave diffraction in a channel containing a contraction and expansion. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The high performance solar sail can enable fast missions to the outer solar system and produce exotic non-Keplerian orbits. As there is no fuel consumption, mission trajectories for solar sail spacecraft are typically optimized with respect to flight time. Several investigations focused on interstellar probe missions have been made, including optimal methods and new objective functions. Two modes of interstellar mission trajectories, namely “direct flyby” and “angular momentum reversal trajectory”, are compared and discussed. As a foundation, a 3D non-dimensional dynamic model for an ideal plane solar sail is introduced as well as an optimal control framework. A newly found periodic double angular momentum reversal trajectory is presented, and some properties and potential applications of this kind of inverse orbits are illustrated. The method how to achieve the minimum periodic inverse orbit is also briefly elucidated.  相似文献   

8.
In this paper we discuss discontinuous periodic solution and discontinuous solitary wave of the shallow water model of geophysical fluid dynamics. When we consider the properties of trajectory near non-equilibrium point, i.e. singular point, we find that if we introduce the concept of generalized solution (piecewise smoothing continuous solution), then the system will produce discontinues periodic solution and the condition of discontinuous periodic solution can he obtained. When the system is degenerated, we find that the discontinuous solitary wave is existent in the system. In this paper we consider a series of problems and obtain analytic expression of discontinuous solution. This result is compared with squall line in the atmosphere, and both of them have many things in common.  相似文献   

9.
A boundary element method is proposed for studying periodic shallow water problems. The numerical model is based on the shallow water equation. The key feature of this method is that the boundary integral equations are derived using the weighted residual method and the fundamental solutions for shallow water wave problems are obtained by solving the simultaneous singular equations. The accuracy of this method is studied for the wave reflection problem in a rectangular tank. As a result of this test, it has been shown that the number of element divisions and the distribution of nodes are significant to the accuracy. For numerical examples of external problems, the wave diffraction problems due to single cylindrical, double cylindrical and plate obstructions are analysed and compared with the exact and other numerical solutions. Relatively accurate solutions are obtained.  相似文献   

10.
11.
周期激励浅拱分岔研究   总被引:2,自引:0,他引:2  
研究了一阶和二阶模态在1:2内共振条件下浅拱的复杂动力学行为,指出当周期激励浅拱具有初始静变形时,系统的一阶模态和二阶模态会产生内共振,系统两共振模态之间会产生相互作用,系统的能量会在其低阶和高阶模态之间相互传递,对称破缺后的Hopf分岔解会通过一系列的倍化周期分岔导致混沌,在混沌域中还会发现稳定的周期解窗口.  相似文献   

12.
将Melan静力型安定定理加以推广,使其适用于非关联流动法则下的土工结构的安定性分析.应用Palmer的方法构造塑性势面,根据其性质,证明了静力型安定定理在非关联流动法则下同样成立.在非关联的Mok—Coulomb准则下,求解浅黏土层地基极限载荷,得到了比较合理的解答.最后,计算了非关联流动法则下的条形基础地基的安定裁荷.  相似文献   

13.
A numerical technique for the modelling of shallow water flow in one and two dimensions is presented in this work along with the results obtained in different applications involving unsteady flows in complex geometries. A cell‐centred finite volume method based on Roe's approximate Riemann solver across the edges of both structured and unstructured cells is presented. The discretization of the bed slope source terms is done following an upwind approach. In some applications a problem arises when the flow propagates over adverse dry bed slopes, so a special procedure has been introduced to model the advancing front. It is shown that this modification reproduces exactly steady state of still water in configurations with strong variations in bed slope and contour. The applications presented are mainly related with unsteady flow problems. The scheme is capable of handling complex flow domains as will be shown in the simulations corresponding to the test cases that are going to be presented. Comparisons of experimental and numerical results are shown for some of the tests. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
The time-spectral method (TSM) offers the advantage of increased order of accuracy compared to methods using finite-difference in time for periodic unsteady flow problems. Explicit Runge–Kutta pseudo-time marching and implicit schemes have been developed to solve iteratively the space-time coupled nonlinear equations resulting from TSM. Convergence of the explicit schemes is slow because of the stringent time-step limit. Many implicit methods have been developed for TSM. Their computational efficiency is, however, still limited in practice because of delayed implicit temporal coupling, multiple iterative loops, costly matrix operations, or lack of strong diagonal dominance of the implicit operator matrix. To overcome these shortcomings, an efficient space-time lower–upper symmetric Gauss–Seidel (ST-LU-SGS) implicit scheme with multigrid acceleration is presented. In this scheme, the implicit temporal coupling term is split as one additional dimension of space in the LU-SGS sweeps. To improve numerical stability for periodic flows with high frequency, a modification to the ST-LU-SGS scheme is proposed. Numerical results show that fast convergence is achieved using large or even infinite Courant–Friedrichs–Lewy (CFL) numbers for unsteady flow problems with moderately high frequency and with the use of moderately high numbers of time intervals. The ST-LU-SGS implicit scheme is also found to work well in calculating periodic flow problems where the frequency is not known a priori and needed to be determined by using a combined Fourier analysis and gradient-based search algorithm.  相似文献   

15.
本文将太阳引力摄动视为受摄不规则小行星系统的组成部分,借鉴非线性振动理论中参数激励共振的概念,创新性地设计了不规则小行星平衡点附近稳定的悬停观测轨道.为了同时考虑不规则小行星引力和太阳引力, 本文采用受摄粒杆模型描述系统.通过对未扰系统平衡点以及固有频率的分析, 给出系统存在参激共振轨道的条件.再以第二类参激主共振和1:3内共振为例,采用多尺度方法求得参数激励共振轨道的稳态解, 并对稳态解的稳定性进行判断.通过受摄小行星系统的幅频响应曲线以及力频响应曲线分析了系统的非线性特性以及参数激励效应.此外, 对内共振引起的长短周期能量转移现象进行了分析.本文的研究成果可以拓展现有小行星系统周期轨道族设计方法.  相似文献   

16.
Time-varying thrust has been measured on a rotor in shallow turbulent flow at laboratory scale. The onset flow has a turbulence intensity of 12% at mid depth and a longitudinal turbulence length scale of half the depth, about 5 times the vertical scale, typical of shallow flows. The rotor is designed to have thrust and power coefficient variations with tip speed ratio close to that of a full-scale turbine. Three extreme probability distributions give similar thrust exceedance values with the Type 1 Pareto in mid range which gives 1:100, 1:1000 and 1:10 000 exceedance thrust forces of 1.38, 1.5 and 1.59 times the mean value. With opposing waves superimposed the extreme thrust distribution has a very similar distribution to the turbulent flow only. Exceedance forces are predicted by superposition of a drag force with drag coefficient of 2.0 based on the wave particle velocity only and with an unchanged mean thrust coefficient of 0.89. These values are relevant for the design of support structures for marine turbines.  相似文献   

17.
The planning and conducting of physical experiments requires the development of theoretical models capable either of predicting possible experimental data or explaining those already obtained. The processes taking place in the physical world can be understood only in terms of the close interaction between theory and experiment. Developing any quantitative or qualitative model of a physical phenomenon requires a mathematical apparatus, on the basis of which such models can be constructed. The branch of theoretical science using the methods of magnetohydrodynamics and hydroaeromechanics for studying space physics problems is usually called cosmic gasdynamics; it is mostly used in developing models of physical phenomena occurring under space conditions. In order to emphasize the importance of cosmic gasdynamics in the development of astrophysics and space research, we will present several examples of models constructed by aerodynamicists. These models not only played an important role in qualitative predictions but are still being developed due to the need for the quantitative interpretation of the experimental data. The solar corona was long thought to be a formation in a state of gravitational equilibrium (Chapman model). However, it turned out that the pressure at infinity obtained on the basis of this equilibrium solution is considerably greater than the estimated pressure in the interstellar gas surrounding the solar corona. In [1] it was concluded that in this case the solar corona gas must expand and a solution describing this expansion was obtained by invoking the steady-state hydrodynamics equations in the spherically-symmetric approximation. The solution of these equations led to the theoretical prediction of the solar wind, a radial flow of fully ionized hydrogen plasma issuing from the solar corona at a low subsonic velocity but already hypersonic at the Earth’s orbit. Subsonic-to-supersonic transition is ensured by solar gravitation which in this case plays the role of a convergent-divergent nozzle. Within a year, the theoretical prediction of the solar wind [1] was confirmed by its experimental detection [2] onboard the Soviet spacecraft Luna-2. It turned out that at the Earth’s orbit the mean velocity of the solar wind V E ≈ 450 km·s?1, the mean proton temperature T E ≈ 6 · 104 K (the electron temperature is somewhat higher), and the mean concentration of protons (and electrons) n E ≈ 10 cm?3. The first hydrodynamic model of the supersonic solar-wind flow past the Earth’s magnetosphere [3] was only qualitative, since it considered a flow past a plane magnetic dipole in the approximation of a thin layer between the bow shock and an “obstacle” embedded in the flow. However, it was constructed before the actual discovery of the solar wind and provided further important impetus to the development of models of the supersonic solar wind flow past planets with a detached shock. One more example is furnished by the gasdynamicmodel of the solar wind flow past cometary atmospheres, first suggested in In this work, a model of the interaction between the supersonic solar wind and the supersonic flow of the local, i.e., surrounding the Sun, interstellar medium is considered; it was first suggested in [6] in a much simplified formulation. This model has been actively developed in connection with the flights of the spacecraft Voyager 1 and 2, Ulysses, Hubble Space Telescope, SOHO, and others, exploring the outer regions of the solar system.  相似文献   

18.
The special class of periodic travelling waves which is known as roll waves is investigated for nonhomogeneous hyperbolic equations of gas dynamics type. In this Note these equations are applied to shallow water flows in inclined open channels, but the results obtained are more general and far-reaching. The necessary conditions for the existence of a roll wave are derived. It is shown that for a nonconvex pressure term, multi-shock configurations of roll waves of finite amplitude exist. A new type of periodic travelling wave, which corresponds to the slug flow regime in two-layer flows, is found. To cite this article: A. Boudlal, V.Yu. Liapidevskii, C. R. Mecanique 332 (2004).  相似文献   

19.
We develop a theoretical model for inclined free-surface flow over a porous surface exhibiting periodic undulations. The effect of bottom permeability is incorporated by imposing a slip condition that accounts for the nonplanar geometry of the fluid–porous medium interface. Under the assumption of shallow flow, equations of motion accounting for inertial effects are obtained by retaining in the Navier-Stokes equations terms that are up to second-order with respect to a small shallowness parameter. The explicit dependence on the cross-stream coordinate is eliminated from these equations by means of a weighted residual procedure. A linear stability analysis of the steady flow is performed in connection with Floquet–Bloch theory. The results predict that bottom permeability has a destabilizing influence on the flow. A physical explanation has been proposed which involves examining how permeability affects the steady-state flow. Conclusions are drawn regarding the combined effect of the surface tension of the fluid and the parameters describing the bottom surface including permeability, inclination and the amplitude and wavelength of the undulations that generate the bottom topography. A numerical scheme for solving the fully nonlinear governing equations is also outlined. The instability of particular steady flows is determined by conducting nonlinear simulations of the temporal evolution of the flow and comparisons are made with the predictions from the linear analysis. Comparisons with existing experimental data are also included.  相似文献   

20.
A semi-implicit Lagrangian finite difference scheme for 3D shallow water flow has been developed to include an eddy viscosity model for turbulent mixing in the vertical direction. The α-co-ordinate system for the vertical direction has been introduced to give accurate definition of bed and surface boundary conditions. The simple two-layer mixing length model for rough surfaces is used with the standard assumption that the shear stress across the wall region at a given horizontal location is constant. The bed condition is thus defined only by its roughness height (avoiding the need for a friction formula relating to depth-averaged flow, e.g. Chezy, used previously). The method is shown to be efficient and stable with an explicit Lagrangian formulation for convective terms and terms for surface elevation and vertical mixing handled implicitly. The method is applied to current flow around a circular island with gently sloping sides which produce periodic recirculation zones (vortex shedding). Comparisons are made with experimental measurements of velocity using laser Doppler anemometry (time histories at specific points) and surface particle-tracking velocimetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号