首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assessment of the cyclic electron delocalization of the oxocarbon dianions, C(n)()O(n)()(2)(-) and their neutral counterparts C(n)()O(n)() (n = 3-6), by means of structural, energetic, and magnetic criteria, shows that C(3)O(3)(2)(-) is doubly aromatic (both sigma and pi cyclic electron delocalization), C(4)O(4)(2)(-) is moderately aromatic, but C(5)O(5)(2)(-), as well as C(6)O(6)(2)(-), are less so. Localized orbital contributions, computed by the individual gauge for localized orbitals method (IGLO), to the nucleus-independent chemical shifts (NICS) allow pi effects to be disected from the sigma single bonds and other influences. The C-C(pi) contribution to (NICS(0,pi) (i.e., at the center of the ring) in oxocarbon dianions decreases with ring size but shows little ring size effect at points 1.0 A above the ring. On the basis of the same criteria, C(4)O(4) exhibits cyclic electron delocalization due to partial occupancy of the sigma CC bonds. However, the dissociation energies of all the neutral oxocarbons, C(n)()O(n)(), are highly exothermic.  相似文献   

2.
The equilibrium geometries, energies, harmonic vibrational frequencies, and nucleus independent chemical shifts (NICSs) of the ground state of P5(-) (D(5h)) anion, the [Ti (eta(5)-P5)]- fragment (C(5v)), and the sandwich complex [Ti(eta(5)-P5)2]2- (D(5h) and D(5d)) are calculated by the three-parameter fit of the exchange-correlation potential suggested by Becke in conjunction with the LYP exchange potential (B3LYP) with basis sets 6-311+G(2d) (for P) and 6-311+G(2df) (for Ti). In each of the three molecules, the P-P and Ti-P bond distances are perfectly equal: five P atoms in block P5(-) lie in the same plane; the P-P bond distance increases and the Ti-P bond distance decreases with the order P5(-), [Ti(eta(5)-P5)2]2-, and [Ti (eta(5)-P5)]-. The binding energy analysis, which is carried out according to the energy change of hypothetic reactions of the three species, predicts that the three species are all very stable, and [Ti (eta(5)-P5)]- (C(5v)), more stable than P5(-) and [Ti(eta(5)-P5)2]2- synthesized in the experiment, could be synthesized. NICS values, computed for the anion and moiety of the three species with GIAO-B3LYP, reveal that the three species all have a larger aromaticity, and NICS (0) of moiety, NICS (1) of moiety, and minimum NICS of the inner side of ring P5 plane in magnitude increase with the order P5(-), [Ti(eta(5)-P5)2]2-, and [Ti (eta(5)-P5)]-. By analysis of the binding energetic and the molecular orbital (MO) and qualitative MO correlation diagram, and the dissection of total NICS, dissected as NICS contributions of various bonds, it is the main reason for P5(-) (D(5h)) having the larger aromaticity that the P-P sigma bonds, and pi bonds have the larger diatropic ring currents in which NICS contribution are negative, especially the P-P sigma bond. However, in [Ti (eta(5)-P5)]- (C(5v)) and [Ti(eta(5)-P5)2]2- (D(5h), and D(5d)), the reason is the larger and more negative diatropic ring currents in which the NICS contributions of P-P pi bonds and P5-Ti bonds including pi, delta, and sigma bonds, especially P5-Ti bonds, are much more negative and canceled the NICS contributions of P and Ti core and lone pair electrons.  相似文献   

3.
Sets of boron rings enclosing planar hypercoordinate group 14 elements (ABn(n-8); A = group 14 element; n = 6-10) are designed systematically based on geometrical and electronic fit principles: the size of a boron ring must accommodate the central atom comfortably. The electronic structures of the planar minima with hypercoordinate group 14 elements are doubly aromatic with six pi and six in-plane radial MO systems (radial MOs are comprised of boron p orbitals pointing toward the ring center). This is confirmed by induced magnetic field and nucleus-independent chemical shift (NICS) computations. The weakness of the "partial" A-B bonds is compensated by their unusually large number. Although a C7v pyramidal SiB8 structure is more stable than the D8h isomer, Born-Oppenheimer molecular dynamics simulations show the resistance of the D8h local minimum against deformation and isomerization. Such evidence of the viability of the boron ring minima with group 14 elements encourages experimental realization.  相似文献   

4.
The structures, energies, natural charges, and magnetic properties of 3-, 5-, 7-, and 9-membered cyclic polyenes 1-4, respectively, with exocyclic methylene, keto, ketenyl, and diazo substituents (a-d, respectively) were computed at the B3LYP/6-311G+ **//B3LYP/6-311+G** level to elucidate their aromatic and antiaromatic properties. The corresponding conjugated cyclic cations le and 3e were also studied. The criteria used are isomerization energies (ISE), magnetic susceptibility exaltations (lambda), aromatic stabilization energies (ASE), nucleus independent chemical shifts (NICS), and bond length alternation (deltaR). Planar C2v structures were found to be the lowest energy minima with the exceptions of diazocyclopropene (1d), cycloheptafulvenone (3c), diazocycloheptatriene (3d), and all of the cyclononatetraene derivatives (4). The fulvenes (1a-4a) have modest aromatic or antiaromatic character, and are used as standards for comparison. By these criteria the ketenylidene and diazo cyclopropenes and cycloheptatrienes 1,3-c,d and oxo cyclopentadiene and cyclononatetraene 2,4b are antiaromatic, while the 5- and 9-ring ketenyl and diazo compounds and 3- and 7-ring ketones are aromatic. The degree of aromatic/antiaromatic character decreases with ring size. The consistent agreement with Hückel rule predictions for all the criteria shows their utility for the evaluation of the elusive properties of aromaticity and antiaromaticity.  相似文献   

5.
Theoretical examination [B3LYP/6-31G(d,p), PP/IGLO-III//B3LYP/6-31G(d,p), and NBO methods] of six-membered cyclohexane 1 and carbonyl-, thiocarbonyl-, or methylidene-containing derivatives 2-27 afforded precise structural (in particular, C-H bond distances) and spectroscopic (specifically, one-bond (1)J(C)(-)(H) NMR coupling constants) data that show the consequences of stereoelectronic hyperconjugative effects in these systems. Major observations include the following. (1) sigma(C)(-)(H)(ax)() -->(C)(=)(Y) and pi(C)(=)(Y) --> sigma(C)(-)(H)(ax)() (Y = O, S, or CH(2)) hyperconjugation leads to a shortening (strengthening) of the equatorial C-H bonds adjacent to the pi group. This effect is reflected in smaller (1)J(C)(-)(H)(ax)() coupling constants relative to (1)J(C)(-)(H)(eq)(). (2) Comparison of the structural and spectroscopic consequences of sigma(C)(-)(H)(ax)() --> pi(C)(=)(Y) hyperconjugation in cyclohexanone 2, thiocyclohexanone 3, and methylenecyclohexane 4 suggests a relative order of acceptor orbital ability C=S > C=O > C=CH(2), which is in line with available pK(a) data. (3) Analysis of the structural and spectroscopic data gathered for heterocyclic derivatives 5-12 reveals some additivity of sigma(C)(-)(H)(ax)() --> pi(C)(=)(Y), pi(C)(=)(Y) --> sigma(C)(-)(H)(ax)(), n(X) --> sigma(C)(-)(H)(ax)(), n(beta)(O) --> sigma(C)(-)(H)(eq)(), and sigma(S)(-)(C) --> sigma(C)(-)(H)(eq)() stereoelectronic effects that is, nevertheless, attenuated by saturation effects. (4) Modulation of the C=Y acceptor character of the exocyclic pigroup by conjugation with alpha-heteroatoms O, N, and S in lactones, lactams, and methylidenic analogues 13-24 results in decreased sigma(C)(-)(H)(ax)() --> pi(C)(=)(Y) and pi(C)(=)(Y) --> sigma(C)(-)(H)(ax)() hyperconjugation. (5) Additivity of sigma(C)(-)(H)(ax)() --> pi(C)(=)(Y) and pi(C)(=)(Y) --> sigma(C)(-)(H)(ax)() hyperconjugative effects is also apparent in 1,3-dicarbonyl derivative 25 (C=Y equal to C=O), 1,3-dithiocarbonyl derivative 26 (C=Y equal to C=S), and 1,3-dimethylidenic analogue 27 (C=Y equal to C=CH(2)).  相似文献   

6.
The gas-phase electron transmission (ET) and dissociative electron attachment (DEA) spectra are reported for the series of (bromoalkyl)benzenes C6H5(CH2)nBr (n = 0-3), where the bromine atom is directly bonded to a benzene ring or separated from it by 1-3 CH2 groups, and the dihalo derivative 1-Br-4-Cl-benzene. The relative DEA cross sections (essentially due to the Br- fragment) are reported, and the absolute cross sections are also evaluated. HF/6-31G and B3LYP/6-31G* calculations are employed to evaluate the virtual orbital energies (VOEs) for the optimized geometries of the neutral state molecules. The pi* VOEs, scaled with empirical equations, satisfactorily reproduce the corresponding experimental vertical electron attachment energies (VAEs). According to the calculated localization properties, the LUMO (as well as the singly occupied MO of the lowest lying anion state) of C6H5(CH2)3Br is largely localized on both the benzene ring and the C-Br bond, despite only a small pi*/sigma*C-Br interaction and in contrast to the chlorine analogue where the LUMO is predicted to possess essentially ring pi character. This would imply a less important role of intramolecular electron transfer in the bromo derivative for production of the halogen negative fragment through dissociation of the first resonant state. The VAEs calculated as the anion/neutral energy difference with the 6-31+G* basis set which includes diffuse functions are relatively close to the experimental values but do not parallel their sequence. In addition the SOMO of some compounds is not described as a valence MO with large pi* character but as a diffuse sigma* MO.  相似文献   

7.
Current-density maps were calculated by the ipsocentric CTOCD-DZ/6-311G** (CTOCD-DZ=continuous transformation of origin of current density-diamagnetic zero) approach for three sets of inorganic monocycles: S(4) (2+), Se(4) (2+), S(2)N(2), P(5) (-) and As(5) (-) with 6 pi electrons; S(3)N(3) (-), S(4)N(3) (+) and S(4)N(4) (2+) with 10 pi electrons; and S(5)N(5) (+) with 14 pi electrons. Ipsocentric orbital analysis was used to partition the currents into contributions from small groups of active electrons and to interpret the contributions in terms of symmetry- and energy-based selection rules. All nine systems were found to support diatropic pi currents, reinforced by sigma circulations in P(5) (-), As(5) (-), S(3)N(3) (-), S(4)N(3) (+), S(4)N(4) (2+) and S(5)N(5) (+), but opposed by them in S(4) (2+), Se(4) (2+) and S(2)N(2). The opposition of pi and sigma effects in the four-membered rings is compatible with height profiles of calculated NICS (nucleus-independent chemical shifts).  相似文献   

8.
H(D) Rydberg atom photofragment translational spectroscopy has been used to investigate the dynamics of H(D) atom loss C6H5SH(C6H5SD) following excitation at many wavelengths lambda phot in the range of 225-290 nm. The C6H5S cofragments are formed in both their ground (X(2)B1) and first excited ((2)B2) electronic states, in a distribution of vibrational levels that spreads and shifts to higher internal energies as lambda(phot) is reduced. Excitation at lambda(phot) > 275 nm populates levels of the first (1)pi pi* state, which decay by tunnelling to the dissociative (1)pi sigma* state potential energy surface (PES). S-H torsional motion is identified as a coupling mode facilitating population transfer at the conical intersection (CI) between the diabatic (1)pi pi* and (1)pi sigma* PESs. At shorter lambda(phot), the (1)pi sigma* state is deduced to be populated either directly or by efficient vibronic coupling from higher (1)pipi* states. Flux evolving on the (1)pi sigma* PES samples a second CI, at longer R(S-H), between the diabatic (1)pi sigma* and ground ((1)pi pi) PESs, where the electronic branching between ground and excited state C6H5S fragments is determined. The C6H5S(X(2)B1) and C6H5S((2)B2) products are deduced to be formed in levels with, respectively, a' and a' vibrational symmetry-behavior that reflects both Franck-Condon effects (both in the initial photoexcitation step and in the subsequent in-plane forces acting during dissociation) and the effects of the out-of-plane coupling mode(s), nu11 and nu16a, at the (1)pi sigma*/(1)pi pi CI. The vibrational state assignments enabled by the high-energy resolution of the present data allow new and improved estimations of the bond dissociation energies, D0(C6H5S-H) < or = 28,030 +/- 100 cm(-1) and D0(C6H5S-D) < or = 28,610 +/- 100 cm(-1), and of the energy separation between the X(2)B1 and (2)B2 states of the C6H5S radical, T(00) = 2800 +/- 40 cm(-1). Similarities, and differences, between the measured energy disposals accompanying UV photoinduced X-H (X = S, O) bond fission in thiophenol and phenol are discussed.  相似文献   

9.
Quantitative evidence for the existence of aromaticity involving the d orbitals of transition metals is provided for the first time. The doubly bridged square planar (D(4)(h)()) coinage metal clusters (M(4)Li(2), M = Cu (1), Ag (2), and Au (3)) are characterized as aromatic by their substantial nucleus independent chemical shifts (NICS) values in the centers (-14.5, -14.1, and -18.6, respectively). Nevertheless, the participation of p orbitals in the bonding (and cyclic electron delocalization) of 1-3 is negligible. Instead, these clusters benefit strongly from the delocalization of d and to some extent s orbitals. The same conclusion applies to Tsipis and Tsipis' H-bridged D(4)(h)() Cu(4)H(4) ring (4). Canonical MO-NICS analysis of structures 1-3 shows the total diatropic d orbital contributions to the total NICS to be substantial, although the individual contributions of the five sets of filled d orbitals vary. The d orbital aromaticity of Cu(4)Li(2) also is indicated by its atomization energy, 243.2 kcal/mol, which is larger than Boldyrev's doubly (sigma and pi) aromatic Al(4)Li(2) (215.9 kcal/mol).  相似文献   

10.
The drum-like C4nNn (n = 3-8) cages and corresponding hydrogenated products C4n H4nN2n (n = 3-8) are studied at the DFT B3LYP/6-31G** level. Their structures, energies, and vibrational frequencies have been investigated. Comparison of heat of formation reveals that C32N16 with D8h symmetry in the C4nN2n (n = 3-8) series is a promising candidate as high energy density matter. The calculation of the DeltaG and DeltaH for the hydrogenation of C4nN2n (n = 3-8) shows that it is an exothermic reaction at 298 K and the C4nH4nN2n (n = 3-8) species are more stable than C4nN2n (n = 3-8) species. The analysis of molecular orbital and selected bond lengths of N-N and C-C provides another insight about their stability. Combined with the nucleus-independent chemical shifts (NICS) calculation, it is indicated that molecular stability for cage-shaped molecules depends on not only aromatic character but also the cage effect.  相似文献   

11.
In light of the important recent synthesis of a stable tetrasilacyclobutadiene dianion compound by Sekiguchi and co-workers and the absence of theoretical studies, ab initio methods have been used to investigate this dianion and a number of related species. These theoretical methods predict multiple minima for each compound, and most minima contain folded and bicyclic silicon rings. For (Si(4)H(4))(2-), (Si(4)H(4))(2-)·2Li(+), [Si(4)(SiH(3))(4)](2-)·2Li(+), [Si(4)(SiH(3))(4)](2-)·2Na(+), and [Si(4)(SiH(3))(4)](2-)·2K(+), respectively, the energetically lowest-lying structures are designated A-3 (C(2v) symmetry), B-8 (C(1) symmetry), C-1 (C(2) symmetry), D-1 (C(2) symmetry), and E-1 (C(2h) symmetry). None of these structures satisfies both the ring planarity and the cyclic bond equalization criteria of aromaticity. However, all of the representative NICS values of these lowest-lying structures are negative, indicating some aromatic character. Especially, structures C-1 and D-1 of C(2) symmetry effectively satisfy the criteria of aromaticity due to the slightly trapezoidal silicon rings, which are nearly planar with nearly equal bond lengths. SiH(3) substitution for hydrogen in (Si(4)H(4))(2-)·2Li(+) significantly reduces the degree of aromaticity, as reflected in the substantially smaller NICS absolute values for [Si(4)(SiH(3))(4)](2-)·2Li(+) than those of (Si(4)H(4))(2-) and (Si(4)H(4))(2-)·2Li(+). The aromaticity is further weakened in [Si(4)(SiH(3))(4)](2-)·2Na(+) and [Si(4)(SiH(3))(4)](2-)·2K(+) by replacing lithium with the sodium and potassium cations.  相似文献   

12.
Aromaticity enhancement is a possible driving force for the low reduction potentials of buta-1,3-diynediyl-expanded [N]radialenes: this hypothesis is theoretically analyzed for the expanded [3]radialene prototype. This study is undertaken within a more general prospect, namely the evaluation of the variation of aromaticity with endocyclic and peripheral carbomeric expansion of [3]radialene and its mono- and dianions. The structures, denoted as [C-H](6) (h)[C-C](3) (k)carbo-[3]radialene(q) (h=0, 1; k=0, 1, 2; q=0, -1, -2), were optimized in relevant singlet, doublet, or triplet spin states at the B3PW91/6-31G** level. They were found to be all planar. The structural aromaticity was measured through the average bond length d(av) over the [C-C](3) (k)carbo-[3]radialene core, and by the corresponding bond-length equalization parameter sigma(d), related to Krygowski's GEO. The magnetic aromaticity was measured by Schleyer's NICS values at the center of the rings. Regarding the relative variation of NICS and sigma(d), two classes of species can be distinguished according to their endocyclic expansion level. The species with a nonexpanded (k=0) or doubly expanded (k=2) ring constitute the first class: they exhibit D(3h) symmetry and a strong correlation of NICS with sigma(d). The species with a singly expanded ring (k=1) fall far from the correlation line, and constitute the second class. This class distinction is related to the degeneracy scheme of the frontier orbitals of the neutral representative. A finer appraisal of the electron (de)localization is brought by the ELF (Electron Localization Function) analysis of the electron density. It allows for a weighting of relevant resonance forms. Unsubstituted species are well described by the superimposition of two or three resonance forms. For (doublet spin state) monoanionic species, their respective weights are validated by comparison with AIM spin density. The weighted mean, n, of the formal numbers of paired pi(z) electrons in the resonance forms was calculated and compared with the closest even integer of either forms 4m+2 or 4m. A density-based continuous generalization of the orbital-based discrete Hückel rule is then heuristically proposed through an analytical correlation of NICS versus sigma(d), n, and S, the spin of the species. The frontier-orbital-degeneracy pattern of neutral species is discussed with respect to structural and magnetic aromaticity criteria. A decreasing HOMO-LUMO gap versus endocyclic expansion is obtained, but [C-C](3) (1)carbo-[3]radialene possesses the highest HOMO and LUMO energies. Vertical and adiabatic electron affinities of neutral and monoanionic species were also computed and compared with related experimental data.  相似文献   

13.
Current-density maps, calculated at the ab initio RHF//6-31G**/CTOCD-DZ level, show no significant pi ring current in planar equilateral geometries of neutral and dianionic [N]radialenes, oxocarbons and thiocarbons C(N)Y(N) (q-) (Y=CH(2), O, S; N=4, 5, 6; q=0 (1 a-12 a), 2 (1 b-12 b)). Only the N=3 deltate dianions C(3)Y(3) (2-) (Y=CH(2), O, S (1 b, 5 b and 9 b)) have discernible pi ring current, and then with at most 20-25 % of the strength of the standard benzene current. On the magnetic criterion, lack of current is definitive evidence against aromaticity. Pictorial molecular-orbital analysis within the ipsocentric approach shows this to be an inevitable consequence of the nodal structure of the pi and pi* orbitals of [N]radialene-like systems. On grounds of angular-momentum symmetry, spatial distribution, or both, the HOMO-LUMO excitation does not contribute a significant central diamagnetic ring current.  相似文献   

14.
The temporary anion states of isothiocyanates CH3CH2=C=S (and CH3CH2N=C=O for comparison), C6H5CH2N=C=S, and C6H5N=C=S are characterized experimentally in the gas phase for the first time by means of electron transmission spectroscopy (ETS). The measured vertical electron attachment energies (VAEs) are compared with the virtual orbital energies of the neutral-state molecules supplied by MP2 and B3LYP calculations with the 6-31G* basis set. The calculated energies, scaled with empirical equations, reproduce satisfactorily the experimental VAEs. The first VAE is also closely reproduced as the total energy difference between the anion and neutral states calculated at the B3LYP/6-31+G* level. Due to mixing between the ring and N=C=S pi-systems, C6H5N=C=S possesses the best electron-acceptor properties, and its lowest-lying anion state is largely localized at the benzene ring. The anion states with mainly pi*C=S and pi*N=C character lie at higher energy than the corresponding anion states of noncumulated pi-systems. However, the electron-acceptor properties of isothiocyanates are found to be notably larger than those of the corresponding oxygen analogues (isocyanates). The dissociative electron attachment (DEA) spectra show peaks close to zero energy and at 0.6 eV, essentially due to NCS- negative fragments. In spite of the energy proximity of the first anion state in phenyl isothiocyanate to the DEA peak, the zero-energy anion current in the benzyl derivative is about 1 order of magnitude larger.  相似文献   

15.
The response of a molecule to an applied external magnetic field can be evaluated by a graphical representation of the induced magnetic field. We have applied this technique to four representative, cyclic organic molecules, that is, to aromatic (C(6)H(6), D(6h)), anti-aromatic (C(4)H(4), D(2h)) and non-aromatic (C(4)H(8), D(4h), and C(6)H(12), D(3d)) molecules. The results show that molecules that contain a pi system possess a long-range magnetic response, while the induced magnetic field is short-range for molecules without pi systems. The induced magnetic field of aromatic molecules shields the external field. In contrast, the anti-aromatic molecules increase the applied field inside the ring. Aromatic, anti-aromatic, and non-aromatic molecules can be characterized by the appearance of the magnetic response. We also show that the magnetic response is directly connected to nucleus-independent chemical shifts (NICS).  相似文献   

16.
Vinylogs of fulvalenes with cyclopropenyl and cyclopentadienyl moieties attached either to different carbon atoms ( c-C 3H 2CHCHC 5H 4- c, 7) or to the same carbon atom [XC( c-C 3H 2)( c-C 5H 4), 10] [X = CH 2; C(CN) 2; C(NH 2) 2; C(OCH 2) 2; O; c-C 3H 2; c-C 5H 4; SiH 2; CCl 2] of the double bond inserted between the two rings are examined theoretically at the B3LYP/6-311G(d,p) level. Both types of compounds are shown to possess aromaticity, which was called "push-pull" and "captodative" aromaticity, respectively. For the captodative mesoionic structures XC( c-C 3H 2)( c-C 5H 4), the presence of both the two aromatic moieties and the CC double bond is the necessary and sufficient condition for their existence as energetic minima on the potential energy surface. Aromatic stabilization energy (ASE) was assessed by the use of homodesmotic reactions and heats of hydrogenation. Spatial magnetic criteria (through space NMR shieldings, TSNMRS) of the two types of vinylogous fulvalenes 7 and 10 have been calculated by the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept of Paul von Rague Schleyer, and visualized as iso-chemical-shielding surfaces (ICSS) of various sizes and directions. TSNMRS values can be successfully employed to visualize and quantify the partial push-pull and captodative aromaticity of both the three- and five-membered ring moieties. In addition, the push -pull effect in compounds 7 and 10 could be quantified by the occupation quotient pi* CC/pi CC of the double bond inserted between the two rings.  相似文献   

17.
The electronic structures of 4-substituted 2-allyl anisoles (1-9) have been investigated by ultraviolet photoelectron spectroscopy and quantum chemical methods. The ionisation potentials corresponding to the pi MOs pi(2) and pi(3) of the phenyl ring, and the n(O) orbital of the methoxy group as well as the allylic pi(C=C) orbital could be determined and assigned for 1-9. Linear regression analyses of the IPs related to these orbitals with different substituent constants indicated that Hammett sigma(p) values performed satisfactorily to fair for pi(2), pi(3) and n(O) but poor for allylic pi(C=C). Other substituent constants such as R and R(-) were fair only for pi(2) and pi(3), but poor for n(O) and pi(C=C).  相似文献   

18.
The symmetry constrained geometries of the eight- and nine-vertex polyhedral boranes and haloboranes BnXnz (n = 8 and 9; X = H, F and Cl; z = -2, -1 and 0) were optimized at the B3LYP/6-311+G(d) level and their nucleus-independent chemical shifts (NICS) were calculated using the GIAO method with Kohn-Sham orbitals. Substitution of halogens on borane cages was found to significantly impact not only the geometric but also magnetic properties. Multiple fluorine substituents cause a deviation from the Wade-Mingos skeletal electron rules in B8F8(2-), resulting in a distortion from the expected D2d bisdisphenoid to a C2v nido type bicapped trigonal prism. However, all of the nine-vertex cages B9X9z retain the D3h tricapped trigonal prismatic structure of B9H9(2-). The presence of halogen substituents was found to enhance the three-dimensional diatropic ring currents within the dianionic borane cages B8X8(2-) and B9X9(2-). For the neutral structures the NICS values indicate BnFn to be aromatic, BnCln to be essentially non-aromatic, and BnHn to be antiaromatic (n = 8, 9).  相似文献   

19.
The [2 + 1] cycloadditions of carbon monoxide and carbon monothioxide CX (X = O, S) to acetylenes (R1C triple bond CR2 with R1 = H, OH and R2 = CH3, OH, NH2, C6H5) have been studied at the B3LYP/6-311G(d,p) level. It has been shown that the reaction proceeds in two steps forming first an intermediate having the properties of both a carbene and a zwitterion followed by a ring closure leading to cyclopropenones or cyclopropenethiones. The solvent effect does not play an important role in the course of the cycloaddition. The estimation of the first vertical excitation energies by CIS and TD-B3LYP methods shows that the reactions likely take place in the ground state rather than in an excited state. All the studied cyclopropenones and cyclopropenethiones are aromatic as shown by their NICS values and confirmed by calculated and experimental NMR chemical shifts. Different reactivity criteria including HOMO coefficient, local softness, hardness, polarizability, and NICS are used to predict the site selectivity in all studied cases, and the NICS criterion seems to yield the best results among them.  相似文献   

20.
We report a theoretical study of ring systems that delocalize electrons in a cyclic array of p orbitals arranged tangentially in sigma-bonding fashion. Sigma-bonded arrays are compared to conventional pi-bonded analogues with respect to orbital symmetry and aromatic/antiaromatic behavior. In a one-to-one correspondence between pi and tangential molecular orbitals of a cycle, local rotation turns each pi to a tangential basis function, changing bonding interactions to antibonding and inverting the order of filling of molecular orbitals. The ipsocentric ring-current mapping approach is used to evaluate aromaticity on the magnetic criterion. As for conventional pi-ring currents, the sigma-ring current in tangential p-p bonded systems is dominated by the HOMO-LUMO transition, corresponding to circulation of four electrons in diatropic (4n + 2)-electron cycles but two in paratropic (4n)-electron cycles. The systems examined here utilize either C 2p or Si 3p orbitals for delocalization. Although interchangeable with C with respect to the fundamental orbital symmetry and ring-current rules, Si bonds at greater internuclear distances, a feature that allows easier design of potentially stable sigma-aromatic structures. Calculations show the wheel-like Si10C50H70 structure 6 as a stable, neutral aromatic molecule with a diatropic ring current following the sigma-bond path formed by Si 3p orbitals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号