首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We exploit the pumped spin-current and current noise spectra under equilibrium conditions in a single quantum dot connected to two normal leads as an electrical scheme for detection of the electron spin resonance (ESR) and decoherence. We propose spin-resolved quantum rate equations with correlation functions in Laplace space for the analytical derivation of the zero-frequency auto- and cross-shot noise spectra of charge and spin current. Our results show that in the strong Coulomb blockade regime, ESR-induced spin flip generates a finite spin current and quantum partition noises in the absence of net charge transport. Moreover, spin shot noise is closely related to the magnetic Rabi frequency and decoherence and would be a sensitive tool to measure them.  相似文献   

2.
We consider a quantum dot attached to leads in the Coulomb blockade regime that has a spin 1 / 2 ground state. We show that, by applying an ESR field to the dot spin, the stationary current in the sequential tunneling regime exhibits a new resonance peak whose linewidth is determined by the single spin decoherence time T2. The Rabi oscillations of the dot spin are shown to induce coherent current oscillations from which T2 can be deduced in the time domain. We describe a spin inverter which can be used to pump current through a double dot via spin flips generated by ESR.  相似文献   

3.
The pumping of electrons through double quantum dots (DQDs) attached to ferromagnetic leads have been theoretically investigated by using the nonequilibrium Green?s function method. It is found that an oscillating electric field applied to the quantum dot may give rise to the pumped charge and spin currents. In the case that both leads are ferromagnet, a pure spin current can be generated in the antiparallel magnetization configuration, where no net charge current exists. The possibility of manipulating the pumped spin current is explored by tuning the dot level and the ac field. By making use of various tunings, the magnitude and direction of the pumped spin current can be well controlled. For the case that only one lead is ferromagnetic, both of the charge and spin currents can be pumped and flow in opposite directions on the average. The control of the magnitude and direction of the pumped charge and spin currents is also discussed by means of the magnetic flux threading through the DQD ring.  相似文献   

4.
With the help of the nonequilibrium Green's function method, the quantum pump in an Aharonov-Bohm interferometer with a quantum dot driven by an ac field are studied theoretically. The ac field applied to the quantum dot may give rise to a pumped charge current at zero-bias voltage in the presence of a nonzero magnetic flux. The possibility of manipulating the pumped charge current is explored by tuning the dot level, the magnetic flux, the coupling strength and the ac field. By making use of various tunings, the magnitude and direction of the pumped charge current can be well controlled. Furthermore, the possibility to generate a pure spin current in the presence of the Rashba spin-orbit interaction has been discussed, which provides an idea for the design of a spin pump electrically.  相似文献   

5.
We propose and analyze a new scheme of realizing both spin filtering and spin pumping by using ac-driven double quantum dots in the Coulomb blockade regime. By calculating the current through the system in the sequential tunneling regime, we demonstrate that the spin polarization of the current can be controlled by tuning the parameters (amplitude and frequency) of the ac field. We also discuss spin relaxation and decoherence effects in the pumped current.  相似文献   

6.
张平  薛其坤  谢心澄 《物理》2004,33(4):238-241
从理论上研究了相互作用量子点在外部旋转磁场下的非平衡自旋输运性质,研究结果表明,量子点中的相干自旋振荡可以导致自旋电流的产生,当计入库仑关联相互作用后,近藤共振效应受外部进动磁场的影响很强,特别是当磁场的进动频率与塞曼能移满足共振条件时,每个自旋近藤峰就会劈裂为两个自旋共振峰的叠加,在低温强耦合区,这种近藤型共隧穿过程对自旋电流带来重要贡献。  相似文献   

7.
Nonequilibrium spin transport through an interacting quantum dot is analyzed. The coherent spin oscillations in the dot provide a generating source for spin current. In the interacting regime, the Kondo effect is influenced in a significant way by the presence of the processing magnetic field. In particular, when the precession frequency is tuned to resonance between spin-up and spin-down states of the dot, Kondo singularity for each spin splits into a superposition of two resonance peaks. The Kondo-type cotunneling contribution is manifested by a large enhancement of the pumped spin current in the strong coupling low temperature regime.  相似文献   

8.
周运清  孔令民  王瑞  张存喜 《物理学报》2011,60(7):77202-077202
利用演化算符的方法,研究了量子点体系中的电流以及自旋流,该体系中量子点和左右磁性电极耦合并且受到微波作用,且两电极之间有直接隧穿,得到了体系电流的解析表达式.发现对于无直接隧穿和零偏压情况,无论对称结构还是非对称结构,电流和自旋流总为零.对于直接隧穿和零偏压情况,对于两边为非对称结构,微波场辐射在量子点上可以导致自旋流而非零的总电流,给出了平行和反平行磁构型下的结果并进行了讨论;对于两边为对称结构结构,平行磁构型下,量子点上加微波场时自旋流和总电流均为零;在反平行磁构型下,量子点上加微波场可以导致自旋流而 关键词: 微波场 直接隧穿 量子点 泵流  相似文献   

9.
The interaction of solid-state qubits with environmental degrees of freedom strongly affects the qubit dynamics, and leads to decoherence. In quantum information processing with solid-state qubits, decoherence significantly limits the performances of such devices. Therefore, it is necessary to fully understand the mechanisms that lead to decoherence. In this review, we discuss how decoherence affects two of the most successful realizations of solid-state qubits, namely, spin qubits and superconducting qubits. In the former, the qubit is encoded in the spin 1/2 of the electron, and it is implemented by confining the electron spin in a semiconductor quantum dot. Superconducting devices show quantum behaviour at low temperatures, and the qubit is encoded in the two lowest energy levels of a superconducting circuit. The electron spin in a quantum dot has two main decoherence channels, a (Markovian) phonon-assisted relaxation channel, due to the presence of a spin–orbit interaction, and a (non-Markovian) spin bath constituted by the spins of the nuclei in the quantum dot that interact with the electron spin via the hyperfine interaction. In a superconducting qubit, decoherence takes place as a result of fluctuations in the control parameters, such as bias currents, applied flux and bias voltages, and via losses in the dissipative circuit elements.  相似文献   

10.
We study the decoherence of a single electron spin in an isolated quantum dot induced by hyperfine interaction with nuclei. The decay is caused by the spatial variation of the electron wave function within the dot, leading to a nonuniform hyperfine coupling A. We evaluate the spin correlation function and find that the decay is not exponential but rather power (inverse logarithm) lawlike. For polarized nuclei we find an exact solution and show that the precession amplitude and the decay behavior can be tuned by the magnetic field. The decay time is given by (planck)N/A, where N is the number of nuclei inside the dot, and the amplitude of precession decays to a finite value. We show that there is a striking difference between the decoherence time for a single dot and the dephasing time for an ensemble of dots.  相似文献   

11.
应变锗空穴量子点是实现超大规模量子计算最有前景的平台之一.由于锗空穴不受超精细相互作影响,有着较长的自旋弛豫时间和量子退相干时间,且锗中本征的强旋轨道耦合和空穴载流子的低有效质量,使得全电场操控空穴自旋量子比特得以实现,极大地降低了器件加工难度,增加了量子点的可扩展性.本文介绍了一种使用应变锗异质结制备重叠栅空穴双量子点器件的方法,完成了应变锗异质结性质测量,空穴双量子点器件制作,单量子点输运性质和双量子点输运性质研究,双量子点耦合可研究调节性研究,以及外磁场存在下的漏电流性质研究和泡利自旋阻塞解除机制的研究.这些工作为未来实现高质量自旋量子比特制备和高保真度量子逻辑门操控提供了实验平台和基本参数.  相似文献   

12.
We demonstrate the operation of a quantum spin pump based on cyclic radio-frequency excitation of a GaAs quantum dot, including the ability to pump pure spin without pumping charge. The device takes advantage of bidirectional mesoscopic fluctuations of pumped current, made spin dependent by the application of an in-plane Zeeman field. Spin currents are measured by placing the pump in a focusing geometry with a spin-selective collector.  相似文献   

13.
The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.  相似文献   

14.
Spin and charge transport through a quantum dot coupled to external nonmagnetic leads is analyzed theoretically in terms of the non-equilibrium Green function formalism based on the equation of motion method. The dot is assumed to be subject to spin and charge bias, and the considerations are focused on the Kondo effect in spin and charge transport. It is shown that the differential spin conductance as a function of spin bias reveals a typical zero-bias Kondo anomaly which becomes split when either magnetic field or charge bias are applied. Significantly different behavior is found for mixed charge/spin conductance. The influence of electron-phonon coupling in the dot on tunneling current as well as on both spin and charge conductance is also analyzed.  相似文献   

15.
We study electron transport through a quantum dot, connected to non-magnetic leads, in a magnetic field. A super-Poissonian electron noise due to the effects of both interacting localized states and dynamic channel blockade is found when the Coulomb blockade is partially lifted. This is sharp contrast to the sub-Poissonian shot noise found in the previous studies for a large bias voltage, where the Coulomb blockade is completely lifted. Moreover, we show that the super-Poissonian shot noise can be suppressed by applying an electron spin resonance (ESR) driving field. For a sufficiently strong ESR driving field strength, the super-Poissonian shot noise will change to be sub-Poissonian.  相似文献   

16.
We investigate adiabatic pumping through a quantum dot with a single level in the mixed-valence and Kondo regimes using the slave boson mean field approximation. The pumped current is driven by a gauge potential due to time-dependent tunneling barriers as well as by the modulation of the Friedel phase. The sign of the former contribution depends on the strength of the Coulomb interaction. Under finite magnetic fields, the separation of the spin and charge currents peculiar to the Kondo effect occurs.  相似文献   

17.
We propose and analyze a new method for manipulation of a heavy-hole spin in a quantum dot. Because of spin-orbit coupling between states with different orbital momenta and opposite spin orientations, an applied rf electric field induces transitions between spin-up and spin-down states. This scheme can be used for detection of heavy-hole spin resonance signals, for the control of the spin dynamics in two-dimensional systems, and for determining important parameters of heavy holes such as the effective g factor, mass, spin-orbit coupling constants, spin relaxation, and decoherence times.  相似文献   

18.
We report on the coherent optical excitation of electron spin polarization in the ground state of charged GaAs quantum dots via an intermediate charged exciton (trion) state. Coherent optical fields are used for the creation and detection of the Raman spin coherence between the spin ground states of the charged quantum dot. The measured spin decoherence time, which is likely limited by the nature of the spin ensemble, approaches 10 ns at zero field. We also show that the Raman spin coherence in the quantum beats is caused not only by the usual stimulated Raman interaction but also by simultaneous spontaneous radiative decay of either excited trion state to a coherent combination of the two spin states.  相似文献   

19.
An effective spin relaxation mechanism that leads to electron spin decoherence in a quantum dot is proposed. In contrast with the common calculations of spin-flip transitions between the Kramers doublets, we take into account a process of phonon-mediated fluctuation in the electron spin preces-sion and subsequent spin phase diffusion. Specifically, we consider modulations in the longitudinal g factor and hyperfine interaction induced by the phonon-assisted transitions between the lowest electronic states. Prominent differences in the temperature and magnetic field dependence between the proposed mechanism and the spin-flip transitions are expected to facilitate its experimental verification. Numerical estimation demonstrates highly efficient spin relaxation in typical semiconductor quantum dots.  相似文献   

20.
In this paper, spin-dependent transport through a spin diode composed of a quantum dot coupled to a normal metal and a ferromagnetic lead is studied. The current polarization and the spin accumulation are analyzed using the equations of motion method within the nonequilibrium Green’s function formalism. We present a suitable method for computing Green’s function without carrying out any self-consistent calculation. The influence of coupling strength and magnetic field on the spin current is studied and observed that this device cannot work as a spin diode under certain conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号