首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A distinct knowledge of the relationship between physiochemical properties, cellular distribution and relaxation efficacy of particulate MR contrast media is needed for the development of tissue specific contrast compounds. To study these relations paramagnetic gadolinium labelled microspheres and superparamagnetic iron oxide microspheres (MSM) were injected intravenously to rats. The T1 and T2 relaxation times of the liver and spleen were recorded and the gadolinium tissue content quantified. A clear relationship between the gadolinium dose and the gadolinium concentration of the liver and spleen was observed while the T1 of the tissues remained unchanged. After injection of MSM, T2 of liver and both T1 and T2 of spleen decreased dose-dependently. The splenic relaxation efficacy of MSM was higher compared with that of liver, probably due to the morphology of the spleen allowing a scattered cellular sequestration of MSM. To mimic a uniform tissue distribution of the contrast agents, the liver and spleen samples were homogenized and a marked increase in the intrinsic relaxation efficacy of both the paramagnetic and superparamagnetic microspheres was observed.  相似文献   

2.
Currently, serum ferritin concentration is the best noninvasive estimator of liver iron content. This study investigated the ability of magnetic resonance imaging to determine hepatic iron concentration. Fisher rats were treated with either parenteral iron to increase levels or phlebotomy to lower them and achieved a wide range of liver iron concentrations. Rats were imaged using a clinical whole body scanner at 1.5 Tesla with a 15-cm Helmholtz surface coil and a 23-cm field of view. The ratio of signal intensity of liver to skeletal muscle from images of the live intact rats correlated well with chemically measured iron concentration of the liver (r = −.89, p < .0001, linear regression analysis). Transverse relaxation rates (1/calculated T2 relaxation times) also correlated with liver iron content (r = .66, p < .0001). The observation of a significant correlation between liver iron content and both signal intensities and T2 relaxation rates, obtained by magnetic resonance imaging, may have considerable clinical relevance. If adapted to humans, this technique would have obvious applications in the diagnosis and management of diseases associated with iron overload as well as in the investigation of the overall role of iron in various human liver diseases.  相似文献   

3.
A total of 4302 healthy blood donors were screened for elevated serum ferritin and transferrin saturation. Fifteen had increased serum ferritin at a follow-up examination. Five relatives of these donors also entered the study. Eleven patients had elevated liver iron concentrations, while five had normal liver iron concentrations. The R2 relaxation rate in the liver was first measured with a conventional multi-spin-echo imaging sequence, and then by a volume-selective spectroscopic multi-spin-echo sequence, in order to achieve a minimum echo time of 4 msec. No correlation was found between the relaxation rate R2 and the liver iron concentration, when R2 was calculated from the imaging data. Multi-exponential transverse relaxation could be resolved when the spectroscopic sequence was used. A strong correlation between the initial slope of the relaxation curve and the liver iron concentration was found (r = 0.90, p < 0.001). Signal intensity ratios between liver and muscle were calculated from the first three echoes in the multi-echo imaging sequence, and from a gradient echo sequence. A strong correlation between the logarithm of the signal intensity ratios and the liver iron concentration was found. Although both spectroscopic T2 relaxation time measurements and signal intensity ratios could be used to quantify liver iron concentration, the gradient echo imaging seemed to be the best choice. Gradient echo imaging could be performed during a single breath hold, so motion artifacts could be avoided. The accuracy of liver iron concentration estimates from signal intensity ratios in the gradient echo images was about 35%.  相似文献   

4.
The fluorine nuclear magnetic resonance spin-lattice relaxation rate (1/T1) of the perfluorochemical blood substitute perfluorotripropylamine (FTPA) is very sensitive to oxygen tension. This presents the possibility of measuring blood oxygen tension by 19F MR imaging. We obtained oxygen-sensitive 19F NMR images of the circulatory system of rats infused with emulsified FTPA. Blood oxygenation was assessed under conditions of both air- and 100% O2-breathing. T1 relaxation times were derived from MR images using a partial saturation pulse sequence. The T1 times were compared with a phantom calibration curve to calculate average blood pO2 values in the lung, liver, and spleen. The results showed marked, organ-specific increases in blood oxygen tension when the rat breathed 100% O2 instead of air.  相似文献   

5.
Proton MR measurements were performed in lyophilized urine samples collected from 5 normals (N) and 5 idiopathic hypercalciuric recurrent stone formers (SF). T1 and T2 relaxation times were measured with a Bruker PC Multispec at 20 MHz and 37 degrees C in the lyophilized samples and in samples gradually rehydrated. Significantly (p less than 0.01) prolonged T1 and T2 relaxation times were measured after addition of water to the lyophilized samples. The relaxation time prolongation patterns were significantly different (p less than 0.01) for the two groups; the rehydration curves of the lyophilized urine samples from the SF group had relatively shorter lag than that of N group. In calculations of water compartmentalization for similar water content, significant (p less than 0.01) differences in the fraction of bound water (FB) were found between the two groups. These results may reflect differences in the macromolecular properties, contents, in the amount of water binding sites and/or in the water multilayer thickness between the two groups. These differences, expressed as changes of the relaxation times values may provide new diagnostic possibilities of different renal pathologies.  相似文献   

6.
This study was undertaken to evaluate the feasibility of multiexponential relaxation data analysis to MR imaging techniques. The first part of this study contains accurate relaxation time measurements performed on a conventional spectrometer. In the second part, essentially the same measuring techniques were applied but now on standard whole body MR imaging equipment. T2 relaxation was measured using multi-echo techniques, T1 relaxation using multiple inversion recovery measurements. Manganese chloride solutions were used for verification of the single exponential model. Water and fat mixtures were considered for multi-exponentiality. Pure fat showed an intrinsic two-exponentiality in T1 and T2 relaxation. Mixtures of fat and water were analyzed and could at best be characterized by two exponentials, although at least three exponentials were known to be present. From the two-exponential fit the relative amounts of fat and water were calculated and compared with the mixture composition. Statistical criteria are discussed to discriminate between single and double exponential behavior in relaxation curves. It is concluded that the time consuming IR measurements for the determination of multiple T1 relaxation are not applicable in a clinical environment. Multiple T2 relaxation can be determined in a reasonable amount of time using multiple echo measurements in one image acquisition. It is shown that the observed values of T1 and T2 from tissues with intrinsic multiexponential relaxation behavior, measured with MR imaging or MR relaxation techniques on a whole-body imager or a conventional spectrometer, depend strongly on the way the experiments are set up and on the model accepted for data analysis.  相似文献   

7.
Fifteen patients with liver cirrhosis and two control groups were examined. The first control group consisted of 7 healthy volunteers, and the second group of 17 patients with nonfocal liver diseases. The T1 and T2 relaxation times were calculated from signal intensities read out from a region of interest centrally located in the liver. T1 relaxation time was longer in the patients with liver cirrhosis than in the two reference groups. Ten patients had a liver biopsy taken prior to the MRI study. No correlation was found between histopathology and the measured relaxation times.  相似文献   

8.
A phantom with T1 and T2 relaxation times encompassing normal liver and liver lesions was constructed to evaluate fast magnetic resonance pulse sequences using TR from 21-100 milliseconds, TE 12-60 milliseconds and flip angles from 5 degrees-90 degrees. Ten of these fast MR sequences were then selected and compared with conventional spin-echo sequences in normal volunteers (n = 3) and in patients with liver lesions (n = 6). Subjectively, the fast MR sequences eliminated motion artefacts. Objectively, 8 of 10 fast sequences had signal-to-noise ratios comparable to spin-echo imaging whereas only 2 of 10 had contrast-to-noise ratios that were similar to spin-echo imaging. This preliminary study, performed at 1.5 Tesla, does not show any clear-cut advantage of fast imaging over spin-echo imaging in the detection of liver lesions. The use of a liver tissue equivalent phantom provides a rapid, practical approach in evaluation of fast scans.  相似文献   

9.
This study investigated the feasibility of an MRI protocol providing whole-body T2* maps at 1.5 T. Seven healthy volunteers (mean age=30.1+/-3.7, three women and four men) and two patients (both male, 53 and 46 years old) affected by transfusion-dependent anemias participated in the study. Coronally oriented images of five subsequent body levels were acquired using a fat-suppressed multiecho 2D gradient-echo sequence (12 echo times ranging from 4.8 to 76.3 ms were selected) and afterwards composed. Parametrical T2* maps of the whole body were reconstructed on a pixel-by-pixel basis. For both, healthy volunteers and patients, representative T2* values were computed from extended regions of interest (ROIs). Good-quality whole-body T2* maps were computed in all volunteers and patients. In healthy volunteers, T2* values were assessed in the cerebral white (58.5+/-4.2 ms) and gray (81.4+/-5.5 ms) matter, liver (34.3+/-7.0 ms), spleen (63.5+/-3.3 ms), kidneys (65.4+/-10.3 ms) and skeletal muscles (~30 ms). The liver presented faster relaxation rates in males as compared to females. One patient (serum ferritin concentration=927 microg/dl) showed shortened T2* values in liver (3.6+/-5.5 ms), spleen (3.1+/-4.8 ms), kidneys (11.1+/-7.1 ms) and muscles (25.1+/-3.4 ms). The second patient (serum ferritin concentration=346 microg/dl) presented reduced T2* values in liver (3.9+/-7.3 ms), spleen (20.1+/-9.8 ms) and kidneys (24.6+/-7.7 ms). The presented technique may find clinical application in the assessment of the iron burden in the entire body, and in monitoring of chelation therapies in patients treated with frequent blood transfusions.  相似文献   

10.
Proton spin-lattice and spin-spin relaxation times have been measured in surgically-removed normal CNS tissues and a variety of tumors of the brain. All measurements were made at 20 MHz and 37 degrees C. Between grey and white matter from autopsy human or canine specimens significant differences in T1 or T2 were observed, with greater differences seen in T1. Such discrimination was reduced in samples obtained from live brain-tumor patients due to lengthening in T1 and T2 of white matter near tumorous lesions. Edematous white matter showed T1 and T2 values higher than those of autopsy disease-free white matter. Compared to normal CNS tissues, most brain tumors examined in this study demonstrated elevated T1 and T2 values. Exceptions, however, did exist. No definitive correlation was indicated on a T1 or T2 basis which allowed a distinction to be made between benign and malignant states. Furthermore, considerable variation in relaxation times occurred from tumor to tumor of the same type, suggesting that within a tumor type there are important differences in physiology, biology, and/or pathologic state. Such variation caused partial overlap in relaxation times among certain tumor types and hence may limit the capability of magnetic resonance imaging (MR) alone for the diagnosis of specific disease. Nonetheless, this study predicts that on the basis of T1 or T2 differences most brain tumors are readily detectable by MR via saturation recovery or inversion recovery with appropriate selections of pulse-spacing parameters. In general, tumors can be discriminated against white matter better than grey matter and contrast between glioma and grey matter is usually superior to that between meningioma and grey matter. This work did not consider tissue-associated proton density which should be addressed together with T1 and T2 for a complete treatment of MR contrast.  相似文献   

11.
In order to predict the most sensitive MR imaging sequence for detecting liver metastases at 1.5 T, in vivo measurements of T1 and T2 relaxation times and proton density were obtained using multipoint techniques. Based on these measurements, two-dimensional contrast contour plots were constructed demonstrating signal intensity contrast between hepatic lesions and surrounding liver parenchyma for different pulse sequences and pulse timing parameters. The data predict that inversion recovery spin echo (IRSE) imaging should yield the greatest contrast between liver metastases and liver parenchyma at 1.5 T, followed by short tau inversion recovery (STIR) and spin-echo (SE) pulse sequences. T2-weighted SE images provided greater liver/lesion contrast than T1-weighted SE pulse sequences. Calculated T1, T2, and proton density values of the spleen were similar to those of hepatic metastatic lesions, indicating that the signal intensity of the spleen may be used as an internal standard to predict the signal intensity of hepatic metastases on T1- and T2-weighted images at 1.5 T.  相似文献   

12.
137Cs is an important component of nuclear waste which may pollute water. Its migration in natural environments is slowed down by adsorption on minerals. Cesium adsorption on akaganeite (beta-FeOOH) particles, dextran-coated ferrihydrite (5 Fe(2)O(3)-9H(2)O) particles, and ferritin in aqueous solutions is studied with (133)Cs nuclear magnetic resonance measurements. The longitudinal relaxation time (T(1)) of (133)Cs in the presence of such magnetic particles depends on whether the ions bind to the particle or not. T(1) of (133)Cs ions in aqueous solutions containing the same amount of magnetized particles will not depend on cesium concentration if relaxation is governed by diffusion (when cesium is not able to bind), but it will depend on cesium concentration if exchange governs relaxation (when cesium is able to bind). The method is successfully tested using TEMPO, a nitroxide stable free radical whose relaxation is due to diffusion. (133)Cs relaxation in solutions of ferritin, akaganeite, and dextran-coated ferrihydrite particles is found to result from a cationic exchange of cesium ions between particles surface and bulk ions, owing to adsorption. The effect of pH on (133)Cs relaxation in solutions of the particles is consistent with the adsorption properties of cations on hydrated iron oxides.  相似文献   

13.
In MR images of porous organic samples (such as roots or wood) in water media, the sample is often surrounded by a bright ring, with a corresponding decreased T1 value in T1 maps. When the medium is removed, or contrast agents are added, the ring disappears, indicating that the signal does not originate in the outer layers of the sample, but from the medium itself. It can be shown that this "bright ring effect" is only observed when the medium experiences a reduction in T1 when permeating the sample. In order to investigate this effect, a computer model was used to simulate the diffusion of magnetisation between regions that exhibit different relaxation constants. Using this model, the origin of the signal increase was found to be an inflow effect, as diffusion transports relaxed magnetisation from the boundary regions of the sample into the surrounding medium. In the case of the "bright ring" around the plants described above, a mixing of short T1 values from within the sample and long T1 values within the medium occurs, yielding a "transition region" between the two values. There, a signal increase can be observed at T1 weighted images, compared to the signal from the medium beyond this transition region. The width of the transition region is on the order of magnitude of the diffusion displacement that is calculated from the T1 value as diffusion time. In addition to causing the bright ring around the plant samples, this diffusion effect also limits the resolution of the relaxation time maps. This effect is not limited to T1 relaxation but also applies to T2 relaxation. However, at high B0 field strengths such as those used in this study (11.7 T), a T2 effect is not usually observed due to the considerably shorter T2 times in plants (about 50 ms, compared to T1 times of higher than 1 s). Because the diffusion length during this T2 relaxation is short with respect to the resolution of the imaging experiments, no T2 ring effect is seen.  相似文献   

14.

Purpose

To test a magnetic resonance image (MRI) technique that uses an additional pulse in multi-echo T2* sequence that works to suppress the fat signal, in subjects with liver iron overload and concomitant presence of fat in the liver, which have been revealed as a major drawback that compromises the correct iron quantification by MRI.

Materials and Methods

Fifty magnetic resonance images of the liver (1.5 T scanner) of individuals with blood ferritin increases were retrospectively reviewed for the presence of steatosis, using the sequence in and out of phase, and iron overloading, using two sequences T2 * multi-echo: one standard and other with additional fat suppression pulse. T2 * values and their standard deviations were analyzed statistically.

Results

Our results showed that a significantly lower standard deviation of T2* values is obtained when the fat saturation pulse is applied in patients with steatosis. We found that modulation of fat signal on liver iron overload resulted in a different categorization of some patients. In one case, the patient was re-classified within normal levels of liver iron.

Conclusion

Our findings may contribute to a better measure of liver iron overload with relevant implications for patient treatment and care.  相似文献   

15.
In vivo estimation of relaxation processes in the liver by magnetic resonance imaging (MRI) may be helpful for characterization of various pathological conditions in the liver. However, such measurements may be significantly hampered by movement of the liver with the respiration. The effect of synchronization of data acquisition to the respiratory cycle on measured T1- and T2-relaxation curves was studied in normal subjects, patients with diffuse liver disease, and patients with focal liver pathology. Multi spin echo sequences with five different repetition times were used. The measurements were carried out with and without respiratory gating/triggering. In the healthy subjects as well as in the patients with diffuse liver diseases respiratory synchronization did not alter the obtained relaxation curves. However, in the patients with focal pathology the relaxation curves were significantly different, when respiratory synchronization was employed. The results indicate that respiratory synchronization is only necessary for estimation of relaxation processes in the liver with focal pathology.  相似文献   

16.
In the present study, T(1) and T(2) of phantoms containing serum sets with varying amounts of proteins, serum samples with certain amounts of proteins, serum diluted by distilled water, and serum treated with iron were measured. In addition, T(1) and T(2) of phantoms containing normal serum, diluted serum, and albumin-doped serum were also measured. Relaxation rates were plotted versus protein concentrations. The slope of relation was taken as relaxivity. The T(1) relaxivities of proteins were ranged from 0.035 to 0.080 s(-1)(g/dl)(-1), whereas T(2) relaxivities were ranged from 0.24 to 0.68 s(-1)(g/dl)(-1). The T(1) and T(2) relaxivities of transferrin iron were 2.40 and 2.60 mM(-1)s(-1), respectively. The contributions of diamagnetic proteins and transferrin iron to the relaxation rate of serum were also calculated for each of diluted serum, normal and albumin-doped serum. The contributions and the average TP relaxivities(calculated by using individual relaxivities and the ratios of protein fractions in TP) were used for TP calculations. The agreement between the calculated TP and TP by autoanalyzer and also the agreement between average TP relaxivities and the TP relaxivities determined from dilution experiments show that the data of relaxivities are reliable. The results suggest that individual protein relaxivities explain the influence of serum TP composition on T(1) and T(2) relaxation times.  相似文献   

17.
We compared the effects of two superparamagnetic iron oxide (SPIO) contrast agents, ferumoxides and SHU-555A, in MR imaging of the liver and spleen. Thirty-six patients with known malignant lesions of the liver underwent T2W turbo spin-echo (TSE) and T1WGRE FLASH opposed-phase imaging before and after SPIO injection on a 1.0 T MR system. Post-ferumoxides images were obtained in 18 patients 90 min after infusion of 15 micrommol Fe/kg of the agent. In 18 other patients SHU-555A was administered as a rapid bolus at a dose of 7.0-12.9 micrommol Fe/kg. T1WGRE FLASH images were obtained immediately, 30 s and 480 s and T2WTSE images 10 min after injection. Signal intensity of the liver, spleen, and malignant liver lesions before and after SPIO was measured with operator-defined regions of interest. The effects of ferumoxides and SHU-555A were measured as the percentage signal intensity change (PSIC) and in the malignant liver lesions additionally as changes in lesion-to-liver contrast-to-noise ratio (deltaDCNR). On T2W TSE images, there was no significant difference between the two agents in signal loss of liver parenchyma (p > 0.05). The signal loss in the spleen produced by ferumoxides was greater than with SHU-555A (p < 0.05). Both SPIO agents produced a significant increase in the CNR of malignant liver lesions. Delta CNR was slightly greater with ferumoxides than with SHU-555A (p < 0.05). On T1WGRE FLASH images, a slight decrease of liver SI induced by both agents was found on late post-SPIO images. No significant difference of liver PSIC between the two SPIO agents was noted on T1W images. The SI of spleen was significantly increased with both agents on T1W images and no difference in PSIC of spleen was noted (p > 0.05). The T1 and T2 effects produced by ferumoxides and SHU-555A were comparable in the liver although ferumoxides produced a stronger T2 effect in the spleen.  相似文献   

18.
Proton relaxation time measurements were performed on a standard whole body MR imager operating at 1.5 T using a conventional surface coil of the manufacturer. A combined CP/CPMG multiecho, multislice sequence was used for the T1 and T2 relaxation time measurements. Two repetition times of 2000 ms (30 echoes) and 600 ms (2 echoes) with 180 degrees-pulse intervals of 2 tau = 22 ms were interleaved in this sequence. A two-exponential T2 analysis of each pixel of the spin-echo images was computed in a case of an acoustic neurinoma. The two-exponential images show a "short" component (T2S) due to white and gray matter and a "long" component (T2S) due to the cerebrospinal fluid. In the fatty tissue two components with T2S = 35 +/- 3 ms and T2L = 164 +/- 7 ms were measured. Comparing with Gd-DTPA imaging the relaxation time images show a clear differentiation of vital tumor tissue and cerebrospinal fluid.  相似文献   

19.
The objective of this study was to assess the value of MR imaging in the differentiation between a recurrent hepatocellular carcinoma (HCC) and a radiation-induced hepatic injury. Nine male patients with suspected recurrence after radiotherapy for HCC underwent T(2)-, T(1)-weighted imaging and Gd-DTPA enhanced dynamic studies. T(2) relaxation times, signal intensity ratios in T(1)-weighted images (WI) and the relative enhancement of the dynamic study were calculated. Recurrent tumors and the irradiated area showed similar image characteristics: hypointense in T(1)-WI and hyperintense in T(2)-WI. T(2) values and signal intensity ratios in the T(1)-WI were not significantly different. In the gadolinium-enhanced dynamic study, a recurrent HCC showed early enhancement, followed by a rapid washout. However, the irradiated liver parenchyma showed hyperintensity from an early phase, and contrast enhancement tended to be more prominent and prolonged at the end of the dynamic studies. The characteristic findings of the dynamic MR study enable us to distinguish between a recurrent HCC and a radiation-induced hepatic injury.  相似文献   

20.
In vivo relaxation times and relative spin densities of gray matter (GM) and white matter (WM) of rat spinal cord were measured. Inductively coupled implanted RF coil was used to improve the signal-to-noise ratio required for making these measurements. The estimated relaxation times (in milliseconds) are: T1(GM) = 1021+/-93, T2(GM) = 64+/-3.4, T1(WM) = 1089+/-126, and T2(WM) = 79+/-6.9. The estimated relative spin densities are: rho(GM) = (60+/-2.3)% and rho(WM) = (40+/-2.1)%. The T1 values of GM and white matter are not statistically different. However, the differences in T2 values and spin densities of GM and WM are statistically significant. These in vivo measurements indicate that the observed contrast between GM and WM in spinal cord MR images mainly arises from the differences in the spin density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号