首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We show the existence of unique global strong solutions of a class of stochastic differential equations on the cone of symmetric positive definite matrices. Our result includes affine diffusion processes and therefore extends considerably the known statements concerning Wishart processes, which have recently been extensively employed in financial mathematics.Moreover, we consider stochastic differential equations where the diffusion coefficient is given by the αth positive semidefinite power of the process itself with 0.5<α<1 and obtain existence conditions for them. In the case of a diffusion coefficient which is linear in the process we likewise get a positive definite analogue of the univariate GARCH diffusions.  相似文献   

2.
We consider state-dependent stochastic networks in the heavy-traffic diffusion limit represented by reflected jump-diffusions in the orthant ℝ+ n with state-dependent reflection directions upon hitting boundary faces. Jumps are allowed in each coordinate by means of independent Poisson random measures with jump amplitudes depending on the state of the process immediately before each jump. For this class of reflected jump-diffusion processes sufficient conditions for the existence of a product-form stationary density and an ergodic characterization of the stationary distribution are provided. Moreover, such stationary density is characterized in terms of semi-martingale local times at the boundaries and it is shown to be continuous and bounded. A central role is played by a previously established semi-martingale local time representation of the regulator processes. F.J. Piera’s research supported in part by CONICYT, Chile, FONDECYT Project 1070797. R.R. Mazumdar’s research supported in part by NSF, USA, Grant 0087404 through Networking Research Program, and a Discovery Grant from NSERC, Canada.  相似文献   

3.
The Bercovici-Pata bijection maps the set of classical infinitely divisible distributions to the set of free infinitely divisible distributions. The purpose of this work is to study random matrix models for free infinitely divisible distributions under this bijection. First, we find a specific form of the polar decomposition for the Lévy measures of the random matrix models considered in Benaych-Georges [6] who introduced the models through their laws. Second, random matrix models for free infinitely divisible distributions are built consisting of infinitely divisible matrix stochastic integrals whenever their corresponding classical infinitely divisible distributions admit stochastic integral representations. These random matrix models are realizations of random matrices given by stochastic integrals with respect to matrix-valued Lévy processes. Examples of these random matrix models for several classes of free infinitely divisible distributions are given. In particular, it is shown that any free selfdecomposable infinitely divisible distribution has a random matrix model of Ornstein-Uhlenbeck type ?? 0 ?? e ?1 d?? t d , d ?? 1, where ?? t d is a d × d matrix-valued Lévy process satisfying an I log condition.  相似文献   

4.
This paper focuses on the resolution of the reachability problem in Petri nets, using the mathematical programming paradigm. The proposed approach is based on an implicit traversal of the Petri net reachability graph. This is done by constructing a unique sequence of Steps that represents exactly the total behaviour of the net. We propose several formulations based on integer and/or binary linear programming, and the corresponding sets of adjustments to the particular class of problem considered. Our models are validated on a set of benchmarks and compared with standard approaches from IA and Petri nets community.  相似文献   

5.
This paper deals with a stochastic stability concept for discrete-time Markovian jump linear systems. The random jump parameter is associated to changes between the system operation modes due to failures or repairs, which can be well described by an underlying finite-state Markov chain. In the model studied, a fixed number of failures or repairs is allowed, after which, the system is brought to a halt for maintenance or for replacement. The usual concepts of stochastic stability are related to pure infinite horizon problems, and are not appropriate in this scenario. A new stability concept is introduced, named stochastic τ-stability that is tailored to the present setting. Necessary and sufficient conditions to ensure the stochastic τ-stability are provided, and the almost sure stability concept associated with this class of processes is also addressed. The paper also develops equivalences among second order concepts that parallels the results for infinite horizon problems.  相似文献   

6.
7.
We present a novel approach for calculating stochastic eigenvalues of differential and integral equations as well as for random matrices. Five examples based on very different types of problem have been analysed and detailed numerical results obtained. It would seem that the method has considerable promise. The essence of the method is to replace the stochastic eigenvalue problem λ(ξ)?(ξ)=A(ξ)?(ξ), where ξ is a set of random variables, by the introduction of an auxiliary equation in which . This changes the problem from an eigenvalue one to an initial value problem in the new pseudo-time variable t. The new linear time-dependent equation may then be solved by a polynomial chaos expansion (PCE) and the stochastic eigenvalue and its moments recovered by a limiting process. This technique has the advantage of avoiding the non-linear terms in the conventional method of stochastic eigenvalue calculation by PCE, but it does introduce an additional, ‘pseudo-time’, independent variable t. The paper illustrates the viability of this approach by application to several examples based on realistic problems.  相似文献   

8.
Mathematical strategy portrays the performance evaluation of computer and communication system and it deals with the stochastic properties of the multiclass Markovian queueing system with class-dependent and server-dependent service times. An algorithm is designed where the job transitions are characterized by more than one closed Markov chain. Generating functions are implemented to derive closed form of solutions and product form solution with the parameters such as stability, normalizations constant and marginal distributions. For such a system with N servers and L chains, the solutions are considerably more complicated than those for the systems with one sub-chain only. In Multi-class queueing network, a job moves from a queue to another queue with some probability after getting a service. A multiple class of customer could be open or closed where each class has its own set of queueing parameters. These parameters are obtained by analyzing each station in isolation under the assumption that the arrival process of each class is a state-dependent Markovian process along with different service time distributions. An algorithmic approach is implemented from the generating function representation for the general class of Networks. Based on the algorithmic approach it is proved that how open and closed sub-chain interact with each other in such system. Specifically, computation techniques are provided for the calculation of the Markovian model for multiple chains and it is shown that these algorithms converge exponentially fast.  相似文献   

9.
The generalised random Fibonacci chain is a stochastic extension of the classical Fibonacci substitution and is defined as the rule that is mapping ${0\mapsto 1}$ and ${1 \mapsto 1^i01^{m-i}}$ with probability p i , where p i ?≥ 0 with ${\sum_{i=0}^m p_i =1}$ , and where the random rule is applied each time it acts on a 1. We show that the topological entropy of this object is given by the growth rate of the set of inflated generalised random Fibonacci words.  相似文献   

10.
A general framework for modeling median type locational decisions, where (i) travel costs and demands may be stochastic, (ii) multiple services or commodities need to be considered, and/or (iii) multiple median type objectives might exist, is presented—using the concept of “multidimensional networks”. The classical m-median problem, the stochastic m-median problem, the multicommodity m-median problem and and multiobjective m-median problem are defined within this framework.By an appropriate transformation of variables, the multidimensional m-median problem simplifies to the classical m-median problem but with a K-fold increase in the number of nodes, where K is the number of dimensions of the network. A nested dual approach to solve the resulting classical m-median problem, that uses Erlenkotter's facility location scheme as a subroutine, is presented. Computational results indicate that the procedure may perhaps be the best available one to solve the m-median problem exactly.  相似文献   

11.
Let A be a set of actions evaluated by a set of attributes. Two kinds of evaluations will be considered in this paper: determinist or stochastic in relation to each attribute. The multi-attribute stochastic dominance (MSDr) for a reduced number of attributes will be suggested to model the preferences in this kind of problem. The case of mixed data, where we have the attributes of different natures is not well known in the literature, although it is essential from a practical point of view. To apply the MSDr the subset R of attributes from which approximation of the global preference is valid should be known. The theory of Rough Sets gives us an answer on this issue allowing us to determine a minimal subset of attributes that enables the same classification of objects as the whole set of attributes. In our approach these objects are pairs of actions. In order to represent preferential information we shall use a pairwise comparison table. This table is built for subset BA described by stochastic dominance (SD) relations for particular attributes and a total order for the decision attribute given by the decision maker (DM). Using a Rough Set approach to the analysis of the subset of preference relations, a set of decision rules is obtained, and these are applied to a set AB of potential actions. The Rough Set approach of looking for the reduction of the set of attributes gives us the possibility of operating with MSDr.  相似文献   

12.
In this paper we prove two relatively compact criterions in some Lp-spaces(p>1) for the set of functionals on abstract Wiener space in terms of the compact embedding theorems in finite dimensional Sobolev spaces. Then, as applications we study several relatively compact families of random fields for the solutions to SDEs (and SPDEs) with coefficients satisfying some bounded assumptions, some stochastic integrals, and local times of diffusion processes.  相似文献   

13.
This paper deals with some models of mathematical physics, where random fluctuations are modeled by white noise or other singular Gaussian generalized processes. White noise, as the distributional derivative od Brownian motion, which is the most important case of a Lévy process, is defined in the framework of Hida distribution spaces. The Fourier transformation in the framework of singular generalized stochastic processes is introduced and its applications to solving stochastic differential equations involving Wick products and singularities such as the Dirac delta distribution are presented. Explicit solutions are obtained in form of a chaos expansion in the Kondratiev white noise space, while the coefficients of the expansion are tempered distributions. Stochastic differential equations of the form P(ωD) ◊ u(xω) = A(xω) are considered, where A is a singular generalized stochastic process and P(ωD) is a partial differential operator with random coefficients. We introduce the Wick-convolution operator which enables us to express the solution as u = sA ◊ I◊(−1), where s denotes the fundamental solution and I is the unit random variable. In particular, the stochastic Helmholtz equation is solved, which in physical interpretation describes waves propagating with a random speed from randomly appearing point sources.  相似文献   

14.
We present a generalization of Krylov-Rozovskii's result on the existence and uniqueness of solutions to monotone stochastic differential equations. As an application, the stochastic generalized porous media and fast diffusion equations are studied for σ-finite reference measures, where the drift term is given by a negative definite operator acting on a time-dependent function, which belongs to a large class of functions comparable with the so-called N-functions in the theory of Orlicz spaces.  相似文献   

15.
In this paper we develop a new approach to stochastic evolution equations with an unbounded drift A which is dependent on time and the underlying probability space in an adapted way. It is well-known that the semigroup approach to equations with random drift leads to adaptedness problems for the stochastic convolution term. In this paper we give a new representation formula for the stochastic convolution which avoids integration of non-adapted processes. Here we mainly consider the parabolic setting. We establish connections with other solution concepts such as weak solutions. The usual parabolic regularity properties are derived and we show that the new approach can be applied in the study of semilinear problems with random drift. At the end of the paper the results are illustrated with two examples of stochastic heat equations with random drift.  相似文献   

16.
We consider a system of stochastic differential equations driven by a standard n-dimensional Brownian motion where the drift function b is bounded and the diffusion coefficient is the identity matrix. We define via a duality relation a vector Z (which depends on b) of square integrable stochastic processes which is shown to coincide with the unique strong solution of the previously mentioned equation. We show that the process Z is well defined independently of the boundedness of b and that it makes sense under the more general Novikov condition, which is known to guarantee only the existence of a weak solution. We then prove that under this mild assumption the process Z solves in the strong sense a related stochastic differential inequality. This fact together with an additional assumption will provide a comparison result similar to well known theorems obtained in the presence of strong solutions. Our framework is also suitable to treat path-dependent stochastic differential equations and an application to the famous Tsirelson equation is presented.  相似文献   

17.
18.
In this paper we investigate a class of harmonic functions associated with a pair xt = (xt11, xt22) of strong Markov processes. In the case where both processes are Brownian motions, a smooth function f is harmonic if Δx1Δx2f(x1,x2) = 0. For these harmonic functions we investigate a certain boundary value problem which is analogous to the Dirichlet problem associated with a single process. One basic tool for this study is a generalization of Dynkin's formula, which can be thought of as a kind of stochastic Green's formula. Another important tool is the use of Markov processes xti?i obtained from xtii by certain random time changes. We call such a process a stochastic wave since it propogates deterministically through a certain family of sets; however its position on a given set is random.  相似文献   

19.
This paper is concerned with hypothesis tests for g-probabilities, a class of nonlinear probability measures. The problem is shown to be a special case of a general stochastic optimization problem where the objective is to choose the terminal state of certain backward stochastic differential equations so as to minimize a g-expectation. The latter is solved with a stochastic maximum principle approach. Neyman–Pearson type results are thereby derived for the original problem with both simple and randomized tests. It turns out that the likelihood ratio in the optimal tests is nothing else than the ratio of the adjoint processes associated with the maximum principle. Concrete examples, ranging from the classical simple tests, financial market modelling with ambiguity, to super- and sub-pricing of contingent claims and to risk measures, are presented to illustrate the applications of the results obtained.  相似文献   

20.
We consider the value function of a stochastic optimal control of degenerate diffusion processes in a domain D. We study the smoothness of the value function, under the assumption of the non-degeneracy of the diffusion term along the normal to the boundary and an interior condition weaker than the non-degeneracy of the diffusion term. When the diffusion term, drift term, discount factor, running payoff and terminal payoff are all in the class of $C^{1,1}(\bar{D})$ , the value function turns out to be the unique solution in the class of $C_{loc}^{1,1}(D)\cap C^{0,1}(\bar{D})$ to the associated degenerate Bellman equation with Dirichlet boundary data. Our approach is probabilistic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号