首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Near-infrared (NIR) spectroscopy is a non-destructive measurement technique for many chemical compounds that has proved its efficiency for laboratory and industrial applications (including petroleum industry). Motor oil classification is an important task for quality control and identification of oil adulteration. Type of motor oil base stock is a key factor in product price formation. In this paper we have tried to evaluate the efficiency of different methods for motor oils classification by base stock (synthetic, semi-synthetic and mineral) and kinematic viscosity at low and high temperature. We have compared the abilities of seven (7) different classification methods: regularized discriminant analysis (RDA), soft independent modelling of class analogy (SIMCA), partial least squares classification (PLS), K-nearest neighbour (KNN), artificial neural network - multilayer perceptron (ANN-MLP), support vector machine (SVM), and probabilistic neural network (PNN) - for classification of motor oils. Three (3) sets of near-infrared spectra (1125, 1010, and 1050 items) were used for classification of motor oils into three or four classes. In all cases NIR spectroscopy was found to be effective for motor oil classification when combined with an effective multivariate data analysis (MDA) technique. SVM and PNN chemometric techniques were found to be the most effective ones for classification of motor oil based on its NIR spectrum.  相似文献   

2.
《Analytical letters》2012,45(7):1145-1154
This paper reports the chemometric predictive models developed for near infrared spectroscopy (NIRS) for the quantitative determination of the kinematic viscosity (37.1–93.1 cSt) of lubricant oils for gear motors. The gear motor is a complete motive force system that consists of an electric motor and a reduction gear train integrated into one easy-to-mount and configure package. The method used for measuring the viscosity of the lubricating oil was ASTM D445, the Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids. A comparison was made among several multivariate calibration techniques and algorithms for pre-processing and variable selection of data, including partial least squares, interval partial least squares (iPLS), a genetic algorithm (GA), and a successive projections algorithm. Finally, the results obtained for the root mean square errors of prediction in cSt and relative average error were, respectively, 1.86 and 2.97% (GA) and 2.36 and 2.97% (iPLS). The method proposed in this study is a useful alternative for the determination of the kinematic viscosity in oils for gear motors.  相似文献   

3.
《Fluid Phase Equilibria》1999,166(1):125-139
A two-parameter viscosity model proposed previously for pure liquids is extended to correlate the kinematic viscosity–temperature behavior for liquid petroleum fractions. The coefficients in the viscosity equation are related to the characterization properties of the petroleum fractions and a generalized kinematic viscosity–temperature correlation is then developed, which needs only specific gravity at 15.6°C and 50% boiling point as input parameters. The present method, when tested by predicting the experimental kinematic viscosities of 47 fractions from 15 world crude oils with total 250 data points, yielded reasonable results with an overall average absolute deviation of 4.2%.  相似文献   

4.
Grant DF  Eastwood D 《Talanta》1983,30(11):825-830
An infrared field-method has been developed which is capable of distinguishing between oils originating from natural seepage in the Santa Barbara (California) Channel region and closely similar oils from onshore drilling platforms. The technique involves a minimum of sample preparation and the use of simple infrared instrumentation which can be operated by non-technical personnel. Natural seep-oil samples were collected from the surface of the water, underwater, and from beaches in the area. The non-seep oils were obtained from production wells which were located in the same geographical areas as the seepage and were from several different well depths corresponding to different geological zones. Natural seep-oils are more aromatic than the production oils, and this difference is evidenced by observed differences in the spectra for both weathered and unweathered oils. These spectral differences between seep and non-seep oils have been found to persist after exposure to weathering for a week.  相似文献   

5.
The freshness of virgin olive oils (VOO) from typical cultivars of Garda regions was evaluated by attenuated total reflectance (ATR) and Fourier transform infrared (FTIR) spectroscopy, in combination with multivariate analysis. The olive oil freshness decreased during storage mainly because of oxidation processes. In this research, 91 virgin olive oils were packaged in glass bottles and stored either in the light or in the dark at room temperature for different periods. The oils were analysed, before and after storage, using both chemical methods and spectroscopic technique.Classification strategies investigated were partial least square discriminant analysis (PLS-DA), linear discriminant analysis (LDA), and soft independent modelling of class analogy (SIMCA).The results show that ATR-MIR spectroscopy is an interesting technique compared with traditional chemical index in classifying olive oil samples stored in different conditions. In fact, the FTIR PCA results allowed a better discrimination among fresh and oxidized oils, than samples separation obtained by PCA applied to chemical data. Moreover, the results obtained by the different classification techniques (PLS-DA, LDA, SIMCA) evidenced the ability of FTIR spectra to evaluate the olive oil freshness. FTIR spectroscopy results are in agreement with classical methods. The spectroscopic technique could be applied for the prediction of VOOs freshness giving information related to chemical modifications. The great advantages of this technique, compared to chemical analysis, are related to rapidity, non-destructive characteristics and low cost per sample. In conclusion, ATR-MIR represents a reliable, cheap and fast classification tool able to assess the freshness of virgin olive oils.  相似文献   

6.
Two new macrocyclic ligands, 6,6′-((1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene))dipicolinic acid (H2DODPA) and 6,6′-((4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene))dipicolinic acid (H2Me-DODPA), designed for complexation of lanthanide ions in aqueous solution, have been synthesized and studied. The X-ray crystal structure of [Yb(DODPA)](PF6)·H2O shows that the metal ion is directly bound to the eight donor atoms of the ligand, which results in a square-antiprismatic coordination around the metal ion. The hydration numbers (q) obtained from luminescence lifetime measurements in aqueous solution of the Eu(III) and Tb(III) complexes indicate that the DODPA complexes contain one inner-sphere water molecule, while those of the methylated analogue H2Me-DODPA are q = 0. The structure of the complexes in solution has been investigated by 1H and 13C NMR spectroscopy, as well as by theoretical calculations performed at the density functional theory (DFT; mPWB95) level. The minimum energy conformation calculated for the Yb(III) complex [Λ(λλλλ)] is in good agreement with the experimental structure in solution, as demonstrated by the analysis of the Yb(III)-induced paramagnetic 1H shifts. The nuclear magnetic relaxation dispersion (NMRD) profiles recorded for [Gd(Me-DODPA)]+ are typical of a complex with q = 0, where the observed relaxivity can be accounted for by the outer-sphere mechanism. However, [Gd(DODPA)]+ shows NMRD profiles consistent with the presence of both inner- and outer-sphere contributions to relaxivity. A simultaneous fitting of the NMRD profiles and variable temperature 17O NMR chemical shifts and transversal relaxation rates provided the parameters governing the relaxivity in [Gd(DODPA)]+. The results show that this system is endowed with a relatively fast water exchange rate k(ex)(298) = 58 × 10(6) s(–1).  相似文献   

7.
Effects of scalar spin-spin interactions on the nuclear magnetic relaxation dispersion (NMRD) of coupled multispin systems were analyzed. Taking spin systems of increasing complexity we demonstrated pronounced influence of the intramolecular spin-spin couplings on the NMRD of protons. First, at low magnetic fields where there is strong coupling of spins the apparent relaxation times of the coupled spins become equal. Second, there are new features, which appear at the positions of the nuclear spin level anticrossings. Finally, in coupled spin systems there can be a coherent contribution to the relaxation kinetics present at low magnetic fields. All these peculiarities caused by spin-spin interactions are superimposed on the features in NMRD, which are conditioned by changes of the motional regime. Neglecting the effects of couplings may lead to misinterpretation of the NMRD curves and significant errors in determining the correlation times of molecular motion. Experimental results presented are in good agreement with theoretical calculations.  相似文献   

8.
Proton nuclear magnetic resonance (NMR) techniques, such as field-cycling relaxometry, wide-line NMR spectroscopy, and magic angle spinning NMR spectroscopy, were applied to study the seeds of cress, Lepidium sativum. Field-cycling NMR relaxometry was used for the first time to investigate the properties of the whole molecular system of dry cress seeds. This method not only allowed the dynamics to be studied, but was also successful in the differentiation among the solid (i.e., carbohydrates, proteins, or fats forming a solid form of lipids) and liquid-like (oil compounds) components of the seeds. The 1H NMR relaxation dispersion of oils was interpreted as a superposition of intramolecular and intermolecular contributions. The intramolecular part was described in terms of a Lorentzian spectral density function, whereas a log–Gaussian distribution of correlation times was applied for the intermolecular dipole–dipole contribution. The models applied led to very good agreement with the experimental data and demonstrate that the contribution of the intermolecular relaxation to the overall relaxation should not be disregarded, especially at low frequencies. A power-law frequency dependence of the proton relaxation dispersion was used for the interpretation of the solid components. From the analysis of the 1H wide-line NMR spectra of the liquid-like component of hydrated cress seeds, we can conclude that the contribution of oil protons should always be taken into account when evaluating the spin–lattice relaxation times values or measuring the moisture and oil content. The application of 1H magic angle spinning NMR significantly improves resolution in the liquid-like spectrum of seeds and allows the determination of the chemical composition of cress seeds.
Figure
Proton wide-line and magic angle spining NMR spectra of dry cress seeds  相似文献   

9.
Effects of spin-spin interactions on the nuclear magnetic relaxation dispersion (NMRD) of protons were studied in a situation where spin [fraction one-half] hetero-nuclei are present in the molecule. As in earlier works [K. L. Ivanov, A. V. Yurkovskaya, and H.-M. Vieth, J. Chem. Phys. 129, 234513 (2008); S. E. Korchak, K. L. Ivanov, A. V. Yurkovskaya, and H.-M. Vieth, ibid. 133, 194502 (2010)], spin-spin interactions have a pronounced effect on the relaxivity tending to equalize the longitudinal relaxation times once the spins become strongly coupled at a sufficiently low magnetic field. In addition, we have found influence of (19)F nuclei on the proton NMRD, although in the whole field range, studied protons and fluorine spins were only weakly coupled. In particular, pronounced features in the proton NMRD were found; but each feature was predominantly observed only for particular spin states of the hetero-nuclei. The features are explained theoretically; it is shown that hetero-nuclei can affect the proton NMRD even in the limit of weak coupling when (i) protons are coupled strongly and (ii) have spin-spin interactions of different strengths with the hetero-nuclei. We also show that by choosing the proper magnetic field strength, one can selectively transfer proton spin magnetization between spectral components of choice.  相似文献   

10.
The present paper demonstrates the review of some acid processes as well as development of some new solvent processes for reclamation of used lubricating oils. The conventional processes are found to be of low yield (? 50%), laborious, time consuming and environmentally hazardous, because of residual acidic sludge. Based on the findings, a new modified Aluminium sulphate‐sodium silicate‐acid‐base method employing a small quantity of acid and giving a high yield (? 60%) is proposed. Further, to avoid use of acid, new regeneration processes based on solvent extraction were investigated. They are termed CCl4‐alcohol method, Dodecane‐alcohol method and Toluene‐alcohol method. These processes are not only cost effective in terms of complete solvent recovery, but are rapid, less time consuming, more environmentally friendly and gave a high yield (70–75%). The virgin lubricants (Castrol GTX and Rimula‐C) as well as oils recovered by different methods were also characterized physicochemically to determine kinematic viscosity, density, refractive index, carbon distribution, wear scar diameter, % Conradson carbon residue, % ash, % chloride, pour point, etc. Results obtained show that many of the physico‐chemical properties of the recovered oils are in good agreement with those of virgin oils. The n.d.M analysis was also performed which shows that virgin oils have 73 ± 3% paraffinic carbon, 26 ± 3% naphthenic carbon and about 1% aromatic carbon. The recovered oils also showed nearly the same chemical composition. The UV‐Visible spectra of the recovered oils are all similar to those of virgin lubricants. The results suggest that the oils recovered by solvent treatments, particularly Dodecan‐alcohol and Toluene‐alcohol methods, may serve for lubrication purposes and can be rendered as excellent as virgin lubricants with the addition of certain additives. The proposed methods may be considered as alternative cost effective green techniques for acid reclamation processes and being the motivation of the present investigation.  相似文献   

11.
Supervised pattern recognition appears to be a useful tool to authenticate foodstuffs according to their geographical or varietal origin, when a set of samples whose classification is known a priori are available. In this work, linear discriminant analysis and artificial neural networks trained by the back-propagation algorithm have been used to discriminate rice bran oils manufactured in three different countries (Italy, Thailand and Switzerland) according to their geographical origin. The variables to be included in the mathematical models have been chosen by means of Fisher F-ratio value among the chemical indices routinely determined on vegetable oils (particularly fatty acids, triglycerides and sterol composition). The prediction ability of all the classifiers was 100% as evaluated by cross-validation.  相似文献   

12.
In this study, essential oils from Voacanga africana seeds at different extraction stages were investigated. In the chemical composition analysis, 27 compounds representing 86.69–95.03% of the total essential oils were identified and quantified. The main constituents in essential oils were terpenoids, alcohols and fatty acids accounting for 15.03–24.36%, 21.57–34.43% and 33.06–57.37%, respectively. Moreover, the analysis also revealed that essential oils from different extraction stages possessed different chemical compositions. In the antioxidant evaluation, all analysed oils showed similar antioxidant behaviours, and the concentrations of essential oils providing 50% inhibition of DPPH-scavenging activity (IC50) were about 25 mg/mL. In the antimicrobial experiments, essential oils from different extraction stages exhibited different antimicrobial activities. The antimicrobial activity of oils was affected by extraction stages. By controlling extraction stages, it is promising to obtain essential oils with desired antimicrobial activities.  相似文献   

13.
The water-soluble endohedral gadofullerene derivatives, Gd@C(60)(OH)(x) and Gd@C(60)[C(COOH)(2)](10), have been characterized with regard to their MRI contrast agent properties. Water-proton relaxivities have been measured in aqueous solution at variable temperature (278-335 K), and for the first time for gadofullerenes, relaxivities as a function of magnetic field (5 x 10(-4) to 9.4 T; NMRD profiles) are also reported. Both compounds show relaxivity maxima at high magnetic fields (30-60 MHz) with a maximum relaxivity of 10.4 mM(-1) s(-1) for Gd@C(60)[C(COOH)(2)](10) and 38.5 mM(-1) s(-1) for Gd@C(60)(OH)(x) at 299 K. Variable-temperature, transverse and longitudinal (17)O relaxation rates, and chemical shifts have been measured at three magnetic fields (B = 1.41, 4.7, and 9.4 T), and the results point exclusively to an outer sphere relaxation mechanism. The NMRD profiles have been analyzed in terms of slow rotational motion with a long rotational correlation time calculated to be tau(R)(298) = 2.6 ns. The proton exchange rate obtained for Gd@C(60)[C(COOH)(2)](10) is k(ex)(298) = 1.4 x 10(7) s(-1) which is consistent with the exchange rate previously determined for malonic acid. The proton relaxivities for both gadofullerene derivatives increase strongly with decreasing pH (pH: 3-12). This behavior results from a pH-dependent aggregation of Gd@C(60)(OH)(x) and Gd@C(60)[C(COOH)(2)](10), which has been characterized by dynamic light scattering measurements. The pH dependency of the proton relaxivities makes these gadofullerene derivatives prime candidates for pH-responsive MRI contrast agent applications.  相似文献   

14.
In this paper, we propose a novel strategy to perform cyclic voltammetric measurements with a platinum microelectrode directly in edible oil samples. The microelectrode was employed as an electronic tongue that, along with the application of chemometrics to the current–potential responses, proved useful for discriminating oils on the basis of their quality and geographical origin. The method proposed here is based on the use of suitable room temperature ionic liquids, added to oils as supporting electrolytes to provide conductivity to the low-polarity samples. The entire voltammograms, recorded directly on the oil/RTIL mixtures, were processed via principal component analysis and a classification technique (K nearest neighbors), to extract information on samples characteristics. Data processing showed that oils having different nature (i.e. maize and olive) or geographical origin (i.e. olive oils coming from different regions) can be distinguished.  相似文献   

15.
Fatty acid-based alkyd resins prepared with different amounts of glycerol and pentaerythritol were characterized. Sacha inchi oil and linseed oil (comparative purposes) were used as fatty acids’ sources. FT-IR and 1H NMR spectroscopy were done for alkyd structural verification. Alkyd resins were evaluated through physico-chemical (colour, density, viscosity) and thermal characterization. Film coating performance (drying, hardness, chemical resistance) was also studied. The oxidative crosslinking time tendency was corroborated by the quartz crystal microbalance (QCM) technique. Alkyd resins obtained with fatty acids from sacha inchi and linseed oils had similar properties. Results indicated that lighter resins can be obtained from sacha inchi oil, whereas pentaerythritol increases viscosity and thermal stability, and retards drying time of fatty-acid based alkyd resins.  相似文献   

16.
《先进技术聚合物》2018,29(4):1313-1321
The objective of the present work was to study the sorption kinetics of open‐cell polypropylene/polyolefin elastomer (PP/POE) blend foams. First, open‐cell PP/POE foams of different cell structures were prepared by controlling the foaming temperature via a continuous extrusion foaming process. Second, the effect of the cell structures on the sorption process, rate, and capacity was studied. Pseudo‐first order and pseudo‐second order models were applied to study the sorption kinetics of the PP/POE foams for cyclohexane. Third, the sorption rate and sorption capacity by both volume and weight of the PP/POE foam for different oils and solvents were studied to show how the intrinsic properties of the testing oils and solvents affected the sorption performance. The results showed that the sorption with the PP/POE foams followed the pseudo‐second order kinetics model. Both the cell structures of the foams and the intrinsic properties of the testing oils and solvents affected the sorption performance. For the same testing oil, a higher open‐cell content in the foam was favorable for a higher sorption rate, and a higher void fraction was favorable for a higher sorption capacity. For the same foam, a lower viscosity of the testing oil was favorable for a higher sorption rate. The sorption capacity by volume was closely related to the viscosity of the testing oil, while both the viscosity and the density of the testing oil determined the sorption capacity by weight.  相似文献   

17.
The results of a (1)H nuclear magnetic relaxation dispersion (NMRD) and EPR study on aqueous suspensions of Gd(3+)-loaded NaY nanozeolites and AlTUD-1 mesoporous material are described. Upon increase of the Si/Al ratio from 1.7 to 4.0 in the Gd(3+)-loaded zeolites, the relaxation rate per mM Gd(3+) (r1) at 40 MHz and 25 degrees C increases from 14 to 27 s(-)1 mM(-1). The NMRD and EPR data were fitted with a previously developed two-step model that considers the system as a concentrated aqueous solution of Gd(3+) in the interior of the zeolite that is in exchange with the bulk water outside the zeolite. The results show that the observed increase in relaxivity can mainly be attributed to the residence lifetime of the water protons in the interior of the material, which decreased from 0.3 to 0.2 micros, upon the increase of the Si/Al ratio. This can be explained by the decreased interaction of water with the zeolite walls as a result of the increased hydrophobicity. The importance of the exchange rate of water between the inside and the outside of the material was further demonstrated by the relatively high relaxivity (33 s(-1) mM(-1) at 40 MHz, 25 degrees C) observed for a suspension of the Gd(3+)-loaded mesoporous material AlTUD-1. Unfortunately, Gd(3+) leaches rather easily from that material, but not from the Gd(3+)-loaded NaY zeolites, which may have potential as contrast agents for magnetic resonance imaging.  相似文献   

18.
The viscosity dependent radiationless relaxation of several cyanine dyes has been studied by picosecond laser spectroscopy. It was found that the relaxation rate is proportional to η. The value of α, however, is not constant for a certain dye molecule, but is strongly dependent on the kind of solvent used. In n-alcohols for instance α is typically about 1. In glycerol/methanol or glycerol/water mixtures on the other hand α ≈ 0.5. A comparison is made with literature data on orientational relaxation lifetimes of some dyes in similar solvents. It is shown that the radiationless relaxation of cyanine dyes and the orientational relaxation of for instance xanthene dyes changes in roughly the same way as the solvent is changed. This is taken as proof of the proposal that a torsional motion of the heterocyclic quinolyl rings is the main course of the viscosity dependent relaxation of the cyanine dyes studied.  相似文献   

19.
Mineral oil is one of the most important materials on earth and it is used widely for its several features. Mineral oils derived from petroleum products are commonly used to decrease the friction effects in machine parts and, thus, they both prevent wear/overheating and facilitate power transmission. In this study, various binary mixtures of various base oils (SN-80, SN-100, SN-150, SN-50, SN-500) were prepared at different volumetric ratios. Kinematic viscosity (at 40°C and 100°C), viscosity index, flash point, pour point, and density (at 20°C) measurements were performed for characterization of the prepared mixtures. These values were modeled by an artificial neural network (ANN) and the model was tested with root mean squared error (RMSE), mean absolute percentage error (MAPE, %), and regression coefficient (R) values. A higher value of correlation coefficient and smaller values of MAPE and RMSE indicate that the model performs better. For predicting kinematic viscosity at 40°C, correlation coefficients were calculated for training and testing the network as 0.9999 and 0.9995, respectively. Respective MAPE values were determined as 1.011% and 1.8771%.  相似文献   

20.
Oilseeds with modified fatty acid profiles have been the genetic alternative for high quality vegetable oil for food and biodiesel applications. They can provide stable, functional oils for the food industry, without the hydrogenation process that produces trans-fatty acid, which has been linked to cardiovascular disease. High yield and high quality oilseeds are also necessary for the success of biodiesel programs, as polyunsatured or saturated fatty acid oil produces biofuel with undesirable properties. In this paper, a rapid and automated low resolution NMR method to select intact oilseeds with a modified fatty acid profile is introduced, based on 1H transverse relaxation time (T2). The T2 weighted NMR signal, obtained by a CPMG pulse sequence and processed by chemometric methods was able to determine the oil quality in intact seeds by its fatty composition, cetane number, iodine value and kinematic viscosity with a correlation coefficient r > 0.9. The automated system has the potential to analyze more than 1000 samples per hour and is a powerful tool to speed up the selection of high quality oilseeds for food and biodiesel applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号