首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The trioxo [ReO(3){SO(3)C(pz)(3)}] (1) (pz = pyrazolyl) and oxo [ReOCl{SO(3)C(pz)(3)}(PPh(3))]Cl (2) compounds with tris(pyrazolyl)methanesulfonate were obtained by treatment of Re(2)O(7) or [ReOCl(3)(PPh(3))(2)], respectively, with Li[SO(3)C(pz)(3)], whereas [ReCl(3){HC(pz)(3)}] (3), [ReCl(3){HC(3,5-Me(2)pz)(3)}] (4) and [ReCl(4){eta(2)-HC(pz)(3)}] (5) were prepared by reaction of [ReOCl(3)(PPh(3))(2)] (3,4) or [ReCl(4)(NCMe)(2)] (5) with hydrotris(pyrazolyl)methane HC(pz)(3) (3,5) or hydrotris(3,5-dimethyl-1-pyrazolyl)methane HC(3,5-Me(2)pz)(3) (4). [ReO{SO(3)C(pz)(3)}{OC(CH(3))(2)pz}][ReO(4)] 6, with a chelated pyrazolyl-alkoxide, was derived from an unprecedented ketone-pyrazolyl coupling on reaction of crude 1 with acetone. The compounds have been characterized by elemental analyses, IR and NMR spectroscopies, FAB-MS spectrometry and cyclic voltammetry and, in the case of 5 and 6, also by single-crystal X-ray diffraction. The electrochemical E(L) Lever parameter has been estimated, for the first time, for the SO(3)C(pz)(3)(-) and oxo ligands allowing the measurement of their electron-donor character and comparison with other ligands. Compounds 1, 2 and 6 appear to be the first tris(pyrazolyl)methanesulfonate complexes of rhenium to be reported.  相似文献   

2.
Carbophosphazene-based coordination ligands [{NC(NMe(2))}(2){NP(3,5-Me(2)Pz)(2)}] (1), [{NC(NEt)(2)}{NC(3,5-Me(2)Pz)}{NP(3,5-Me(2)Pz)(2)}] (2), [NC(3,5-Me(2)Pz)](2)[NP(3,5-Me(2)Pz)(2)] (3), [{NCCl}(2){NP(NC(NMe(2))(2))(2)}] (4), and [{NC(p-OC(5)H(4)N)}(2){NP(NC(NMe(2))(2))(2)}] (5) were synthesized and structurally characterized. In these compounds, the six-membered C(2)N(3)P ring is perfectly planar. The reaction of 1 with CuCl(2) afforded [{NC(NMe(2))}(2){NHP(O)(3,5-Me(2)Pz)}·{Cu(3,5-Me(2)PzH)(2)(Cl)}][Cl] (6). The ligand binds to Cu(II) utilizing the geminal [P(O)(3,5-Me(2)Pz)] coordinating unit. Similarly, the reaction of 2 with PdCl(2) afforded, after a metal-assisted P-N hydrolysis, [{NC(NEt)(2)}{NC(3,5-Me(2)Pz)}{NP(O)(3,5-Me(2)Pz)}·{Pd(3,5-Me(2)PzH)(Cl)}] (7). In the latter, the [P(O)(3,5-Me(2)Pz)] unit does not coordinate; in this instance, the Pd(II) is bound by a ring nitrogen atom and a carbon-tethered pyrazolyl nitrogen atom. The reaction of 3 with PdCl(2) also results in P-N bond hydrolysis affording [{NC(3,5-Me(2)Pz)(2)}{NP(O)(3,5-Me(2)Pz)}{Pd(Cl)}] (8). In contrast to 7, however, in 8, the Pd(II) elicits a nongeminal η(3) coordination from the ligand involving two carbon-tethered pyrazolyl groups and a ring nitrogen atom. Metalated products could not be isolated in the reaction of 3 with K(2)PtCl(4). Instead, a P-O-P bridged carbodiphosphazane dimer, [{NC(3,5-Me(2)Pz)NHC(3,5-Me(2)Pz)}{NP(O)}](2) (9), was isolated as the major product. Finally, the reaction of 5 with PdCl(2) resulted in [{NC(OC(5)H(4)N)}(2){NP(NC(NMe(2))(2))(2)}·{PdCl(2)}] (10). In the latter, the exocyclic P-N bonds are quite robust and are involved in binding to the metal ion. Compounds 6-10 have been characterized by a variety of techniques including X-ray crystallography. In all of the compounds, the bond parameters of the inorganic heterocyclic rings are affected by metalation.  相似文献   

3.
Treating a thf (thf = tetrahydrofuran) suspension of Cd(acac)(2) (acac = acetylacetonate) with 2 equiv of HBF(4).Et(2)O results in the immediate formation of [Cd(2)(thf)(5)](BF(4))(4) (1). Crystallization of this complex from thf/CH(2)Cl(2) yields [Cd(thf)(4)](BF(4))(2) (2), a complex characterized in the solid state by X-ray crystallography. Crystal data: monoclinic, P2(1)/n, a = 7.784(2) ?, b = 10.408(2) ?, c = 14.632(7) ?, beta = 94.64(3) degrees, V = 1181.5(6) ?(3), Z = 2, R = 0.0484. The geometry about the cadmium is octahedral with a square planar arrangement of the thf ligands and a fluorine from each (BF(4))(-) occupying the remaining two octahedral sites. Reactions of [Cd(2)(thf)(5)](BF(4))(4) with either HC(3,5-Me(2)pz)(3) or HC(3-Phpz)(3) yield the dicationic, homoleptic compounds {[HC(3,5-Me(2)pz)(3)](2)Cd}(BF(4))(2) (3) and {[HC(3-Phpz)(3)](2)Cd}(BF(4))(2) (4) (pz = 1-pyrazolyl). The solid state structure of 3 has been determined by X-ray crystallography. Crystal data: rhombohedral, R&thremacr;, a = 12.236(8) ?, c = 22.69(3) ?, V = 2924(4) ?(3), Z = 3, R = 0.0548. The cadmium is bonded to the six nitrogen donor atoms in a trigonally distorted octahedral arrangement. Four monocationic, mixed ligand tris(pyrazolyl)methane-tris(pyrazolyl)borate complexes {[HC(3,5-Me(2)pz)(3)][HB(3,5-Me(2)pz)(3)]Cd}(BF(4)) (5), {[HC(3,5-Me(2)pz)(3)][HB(3-Phpz)(3)]Cd}(BF(4)) (6), {[HC(3-Phpz)(3)][HB(3,5-Me(2)pz)(3)]Cd}(BF(4)) (7), and {[HC(3-Phpz)(3)][HB(3-Phpz)(3)]Cd}(BF(4)) (8) are prepared by appropriate conproportionation reactions of 3or 4 with equimolar amounts of the appropriate homoleptic neutral tris(pyrazolyl)borate complexes [HB(3,5-Me(2)pz)(3)](2)Cd or [HB(3-Phpz)(3)](2)Cd. Solution (113)Cd NMR studies on complexes 3-8 demonstrate that the chemical shifts of the new cationic, tris(pyrazolyl)methane complexes are very similar to the neutral tris(pyrazolyl)borate complexes that contain similar substitution of the pyrazolyl rings.  相似文献   

4.
The reaction of M(BF(4))(2).xH(2)O (M = Co, Ni, and Cu) and HC(3,5-Me(2)pz)(3) in a 1:2 ratio yields [Co[HC(3,5-Me(2)pz)(3)](2)](BF(4))(2) (2), [Ni[HC(3,5-Me(2)pz)(3)](2)](BF(4))(2) (3), and [Cu[HC(3,5-Me(2)pz)(3)](2)](BF(4))(2) (4). Over the temperature range from 5 to 350, 345, or 320 K, Curie law behavior is observed for microcrystalline samples of all three compounds showing them to have three, two, and one unpaired electrons, respectively, with no spin-crossover observed for 2. Crystalline samples of these compounds torque in the applied magnetic field the first time the sample is cooled to 5 K. The solid-state structures of all three are isomorphous at 220 K, monoclinic in the space group C2/c. The metal is located on a unique crystallographic site and has a trigonally distorted octahedral structure, with 4 showing the expected Jahn-Teller distortions. Cooling crystals of all three to low temperatures leads to the observation of the same phase change to triclinic in the new space group P(-)1 with nonmerohedral twinning. This change is reversible and yields two crystallographically unique metal sites at low temperature. The bond angles and distances for the two different metal sites for each compound in the low temperature structures are very similar to each other and to those in the 220 K structures. The same phase change, monoclinic to triclinic, has been observed previously for [Fe[HC(3,5-Me(2)pz)(3)](2)](BF(4))(2) (1), except in this case, the phase change results in half of the cations changing over from the high-spin state to the low-spin state while the other half of the cations remain high-spin, with the low-spin form decreasing its Fe-N bond distances by 0.19 A. The new results with 2-4 show that it is the phase transition, which occurs in complexes of the type [M[HC(3,5-Me(2)pz)(3)](2)](BF(4))(2) with first row transition metals, that is driving the unusual spin-crossover behavior of [Fe[HC(3,5-Me(2)pz)(3)](2)](BF(4))(2).  相似文献   

5.
The room temperature iron K-edge X-ray absorption near edge structure spectra of (Fe[HC(3,5-(CH(3))(2)pz)(3)](2))I(2) and (Fe[HC(3,5-(CH(3))(2)pz)(3)](2))(BF(4))(2) have been measured between ambient and 88 and 94 kbar, respectively, in an opposed diamond anvil cell. The iron(II) in (Fe[HC(3,5-(CH(3))(2)pz)(3)](2))I(2)undergoes the expected gradual spin-state crossover from the high-spin state to the low-spin state with increasing pressure. In contrast, the iron(II) in (Fe[HC(3,5-(CH(3))(2)pz)(3)](2))(BF(4))(2) remains high-spin between ambient and 78 kbar and is only transformed to the low-spin state at an applied pressure of between 78 and 94 kbar. No visible change is observed in the preedge peak in the spectra of (Fe[HC(3,5-(CH(3))(2)pz)(3)](2))I(2) with increasing pressure, whereas the preedge peak in the spectra of ((e[HC(3,5-(CH(3))(2)pz)(3)](2))(BF(4))(2) changes as expected for a high-spin to low-spin crossover with increasing pressure. The difference in the spin-state crossover behavior of these two complexes is likely related to the unusual behavior of (Fe[HC(3,5-(CH(3))(2)pz)(3)](2))(BF(4))(2) upon cooling.  相似文献   

6.
Fluoride mediated desilylation of the propargylidyne complex [W(triple bond C-C triple bond CSiMe(3))(CO)(2){HB(pz)(3)}] (pz = pyrazol-1-yl) in the presence of mercury(II) chloride provides the novel bis(tricarbido)complex [Hg{C triple bond C-C triple bond W(CO)(2){HB(pz)(3)}}(2)], which was structurally characterised as a dmso hexasolvate.  相似文献   

7.
The addition of the tris(pyrazolyl)methane ligand HC(3,5-Me(2)pz)(3) (pz = pyrazolyl ring) to a THF solution of TlPF(6) results in the immediate precipitation of {[HC(3,5-Me(2)pz)(3)](2)Tl}PF(6). The structure has been determined crystallographically. The arrangement of the nitrogen donor atoms about the thallium is best described as a trigonally distorted octahedron. The thallium atom sits on a crystallographic center of inversion; thus the planes formed by the three nitrogen donor atoms of each ligand are parallel. The Tl-N bond distances range from 2.891(5) to 2.929(5) ? (average = 2.92) ?. The lone pair on thallium is clearly stereochemically inactive and does not appear to influence the structure. The pyrazolyl rings are planar, but are tilted with respect to the thallium atom so as to open up the N.N intraligand bite distances. The thallium(I) complex with a ligand to metal ratio of 1/1, {[HC(3,5-Me(2)pz)(3)]Tl}PF(6), is prepared in acetone by the reaction of equimolar amounts of HC(3,5-Me(2)pz)(3) and TlPF(6). The structure of the cation is a trigonal pyramid, with Tl-N bond distances that range from 2.64(1) to 2.70(1) ? (average = 2.67) ?. Pyrazolyl ring tilting is also observed in this complex, but the degree of tilting is smaller. Crystal data for {[HC(3,5-Me(2)pz)(3)](2)Tl}PF(6): monoclinic, P2(1)/c, a = 9.210(6) ?, b = 13.36(1) ?, c = 16.067(8) ?, beta = 92.48(5) degrees, V = 1975(2) ?(3), Z = 2, R = 0.029. For {[HC(3,5-Me(2)pz)(3)]Tl}PF(6): monoclinic, P2(1)/n, a = 10.685(2) ?, b = 16.200(5) ?, c = 13.028(3) ?, beta = 94.02(2) degrees, V = 2249.6(8) ?(3), Z = 4, R = 0.042.  相似文献   

8.
This report describes the synthesis and biological evaluation of cationic (99m)Tc-tricarbonyl complexes anchored by ether-containing tris(pyrazolyl)methane or bis(pyrazolyl)ethanamine ligands to be applied in the design of radiopharmaceuticals for myocardial imaging: fac-[(99m)Tc(CO)(3){RC(pz)(3)}](+) (R = H (1a), MeOCH(2) (2a), EtOCH(2) (3a), (n)PrOCH(2) (4a)) and fac-[(99m)Tc(CO)(3){RNHCH(2)CH(pz)(2)}](+) (R = H (5a), MeO(CH(2))(2) (6a)) (pz = pyrazolyl). At the no carrier added level, complexes 1a-6a were obtained in high radiochemical yield (> 98%) by reaction of fac-[(99m)Tc(CO)(3)(H(2)O)(3)](+) with the corresponding tripod chelator in aqueous medium. All these complexes display a high in vitro and in vivo stability, except 6a which metabolizes in vivo yielding fac-[(99m)Tc(CO)(3){HO(CH(2))(2)NHCH(2)CH(pz)(2)}](+) (7a). Biological studies in mice have shown that among the radiotracers evaluated in this work, 3a, anchored by a tris(pyrazolyl)methane chelator bearing an ethyl methyl ether substituent, has the highest heart uptake (3.6 +/- 0.5%ID g(-1) at 60 min p.i.). Complex 3a presents also the best heart: blood, heart: liver and heart: lung ratios, appearing as the most promising as a potential myocardial imaging agent. The chemical identity of 1a-7a was ascertained by HPLC comparison with the previously reported fac-[Re(CO)(3){HC(pz)(3)}]Br (1) and with the novel fac-[Re(CO)(3){RC(pz)(3)}]Br (R = MeOCH(2) (2), EtOCH(2) (3), (n)PrOCH(2)(4)) and fac-[Re(CO)(3){RNHCH(2)CH(pz)(2)}]Br (R = H (5), MeO(CH(2))(2) (6) HO(CH(2))(2) (7)). The novel Re(I) tricarbonyl complexes, 2-7, were characterized by the common analytical techniques, including single crystal X-ray diffraction analysis. The solid state structure confirmed the presence of facial and tridentate (kappa(3)-N(3)) anchor ligands. Solution NMR studies have also shown that this kappa(3)-N(3) coordination mode is retained in solution for all complexes (2-7).  相似文献   

9.
Wong YL  Ng DK  Lee HK 《Inorganic chemistry》2002,41(20):5276-5285
A new series of cis-dioxomolybdenum(VI) complexes MoO(2)(L(n))Cl (n = 1-5) were prepared by the reaction of MoO(2)Cl(2)(DME) (DME = 1,2-dimethoxyethane) with 2-N-(2-pyridylmethyl)aminophenol (HL(1)) or its N-alkyl derivatives (HL(n)) (n = 2-5) in the presence of triethylamine. The new mu-oxo dimolybdenum compounds [MoO(2)(L(n))](2)O (n = 1, 4, 5, 7) were also prepared by treating the corresponding ligand HL(n) with MoO(2)(acac)(2) (acac = acetylacetonate) in warm methanolic solutions or (NH(4))(6)[Mo(7)O(24)].4H(2)O in the presence of dilute HCl. Treatment of MoO(2)(L(1))Cl or [MoO(2)(L(1))](2)O with the Grignard reagent Me(3)SiCH(2)MgCl gave the alkyl compound MoO(2)(L(1))(CH(2)SiMe(3)), which represents the first example of dioxomolybdenum(VI) alkyl complex supported by a N(2)O-type ancillary ligand. The analogous chloro and mu-oxo tungsten derivatives WO(2)(L(n))Cl (n = 6, 7) and [WO(2)(L(n))](2)O (n = 1, 4, 6, 7) were prepared by the reaction of WO(2)Cl(2)(DME) with HL(n) in the presence of triethylamine. Similar to their molybdenum analogues, the tungsten alkyl complexes WO(2)(L(n))(R) (n = 6, 7; R = Me, Et, CH(2)SiMe(3), C(6)H(4)(t)Bu-4) were synthesized by treating WO(2)(L(n))Cl or [WO(2)(L(n))](2)O (n = 6, 7) with the appropriate Grignard reagents. The catalytic properties of selected dioxo-Mo(VI) and -W(VI) chloro and mu-oxo complexes toward epoxidation of styrene by tert-butyl hydroperoxide (TBHP) were also investigated.  相似文献   

10.
The hybrid dibismuthines O(CH(2)CH(2)BiPh(2))(2) and MeN(CH(2)-2-C(6)H(4)BiPh(2))(2) react with [M(CO)(5)(thf)] (M = Cr or W) to form [{M(CO)(5)}(2){O(CH(2)CH(2)BiPh(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)BiPh(2))(2)}] containing bridging bidentate (Bi(2)) coordination. The unsymmetrical tertiary bismuthine complexes [M(CO)(5){BiPh(2)(o-C(6)H(4)OMe)}] are also described. Depending upon the molar ratio, the hybrid distibines O(CH(2)CH(2)SbMe(2))(2) and MeN(CH(2)-2-C(6)H(4)SbMe(2))(2) react with [M(CO)(5)(thf)] to give the pentacarbonyl complexes [{M(CO)(5)}(2){O(CH(2)CH(2)SbMe(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] or tetracarbonyls cis-[M(CO)(4){O(CH(2)CH(2)SbMe(2))(2)}] and cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}]. The latter can also be obtained from [Cr(CO)(4)(nbd)] or [W(CO)(4)(pip)(2)], and contain chelating bidentates (Sb(2)-coordinated) as determined crystallographically. S(CH(2)-2-C(6)H(4)SbMe(2))(2) coordinates as a tridentate (SSb(2)) in fac-[M(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Cr or Mo) and fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)]. Fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] contains NSb(2)-coordinated ligand in the solid state, but in solution a second species, Sb(2)-coordinated and with a κ(1)-CF(3)SO(3) replacing the coordinated amine is also evident. X-ray crystal structures were also determined for fac-[Cr(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}], fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] and fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] [CF(3)SO(3)]. Hypervalent N···Sb interactions are present in cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Mo or W), but absent for M = Cr.  相似文献   

11.
A 1D Mo(V)Mn(III) chain compound balanced by {Fe[HC(3,5-Me(2)pz)(3)](2)}(2+) dications was prepared. This complex displays a typical single-chain magnet character associated with the Mo(V)Mn(III) chain and a spin crossover phenomenon arising from cationic Fe(II) subunits. The spin crossover behavior tends to slightly affect single-chain magnetic properties at low temperature.  相似文献   

12.
A wide range of N-substituted mono- and dihydroxamic acids undergo oxygen abstraction on reaction with V(III), V(IV), and Mo(V) compounds to form hydroxamates of V(V) and Mo(VI) respectively together with the corresponding amides and diamides. The molybdenyl and vanadyl hydroxamates form metal-oxygen clusters under FABMS conditions. The X-ray crystal structures of [MoO(2){CH(3)(CH(2))(n)()C(O)N(C(6)H(5))O}(2) (1 and 2) (n = 4, 5) show monomeric structures with structural trans effects and consequent weakening of the Mo-O(ligand) bonds which may account for the tendency to form clusters in FABMS. In constrast, the electrospray MS of the vanadyl dihydroxamates, VO(OH)[PhN(O)C(O)(CH(2))(n)()C(O)N(O)Ph] (n = 3, 5) and VO(OH)[p-CH(3)C(6)H(4)N(O)C(O) (CH(2))(n)()C(O)N(O)C(6)H(4)-CH(3)) (n = 2, 4) show the presence of dimers in solution.  相似文献   

13.
The reaction of [MoO(2)Cl(2)(di-tBu-bipy)] (1) (di-tBu-bipy = 4,4'-di-tert-butyl-2,2'-bipyridine) with water at 100-120 °C in a Teflon-lined stainless steel autoclave, in an open reflux system, or in a microwave synthesis system gave the octanuclear complex [Mo(8)O(22)(OH)(4)(di-tBu-bipy)(4)] (2) as a microcrystalline powder in good yields. Single crystals of 2 suitable for X-ray diffraction were obtained by the reaction of MoO(3) and di-tBu-bipy in water at 160 °C for 3 days. The molecular structure of 2 comprises a purely inorganic core, Mo(4)O(8)(μ(3)-OH)(2)(μ(2)-O)(2), attached to two peripheral oxo-bridged binuclear units, Mo(2)O(4)(μ(2)-O)(2)(OH)(di-tBu-bipy)(2). The inorganic core is composed of a unique assembly of four {MoO(5)} distorted square pyramids connected to each other via edge-sharing. Overall, the octanuclear complex adopts a highly distorted form strongly resembling an "S"-shaped molecular unit. Complex 2 was applied in the catalytic epoxidation of the biorenewable olefins DL-limonene (Lim) and methyl oleate (Ole), using tert-butylhydroperoxide (TBHP) as an oxygen donor, under mild reaction conditions (55 °C, air). The reactions of Lim and Ole gave the respective epoxide monomers in fairly high selectivities at high conversions (89% 1,2-epoxy-p-menth-8-ene selectivity at 96% Lim conversion; 99% methyl 9,10-epoxystearate selectivity at 94% Ole conversion, reached within 24 h reaction). Iodometric titrations revealed no measurable "non-productive" decomposition of TBHP.  相似文献   

14.
Hydrolysis of [NbCp'Cl(4)] (Cp' = η(5)-C(5)H(4)SiMe(3)) with the water adduct H(2)O·B(C(6)F(5))(3) afforded the oxo-borane compound [NbCp'Cl(2){O·B(C(6)F(5))(3)}] (2a). This compound reacted with [MgBz(2)(THF)(2)] giving [NbCp'Bz(2){O·B(C(6)F(5))(3)}] (2b), whereas [NbCp'Me(2){O·B(C(6)F(5))(3)}] (2c) was obtained from the reaction of [NbCp'Me(4)] with H(2)O·B(C(6)F(5))(3). Addition of Al(C(6)F(5))(3) to solutions containing the oxo-borane compounds [MCp(R)X(2){O·B(C(6)F(5))(3)}] (M = Ta, Cp(R) = η(5)-C(5)Me(5) (Cp*), X = Cl 1a, Bz 1b, Me 1c; M = Nb, Cp(R) = Cp', X = Cl 2a) afforded the oxo-alane complexes [MCp(R)X(2){O·Al(C(6)F(5))(3)}] (M = Ta, Cp(R) = Cp*, X = Cl 3a, Bz 3b, Me 3c; M = Nb, Cp(R) = Cp', X = Cl 4a), releasing B(C(6)F(5))(3). Compound 3a was also obtained by addition of Al(C(6)F(5))(3) to the dinuclear μ-oxo compound [TaCp*Cl(2)(μ-O)](2), meanwhile addition of the water adduct H(2)O·Al(C(6)F(5))(3) to [TaCp*Me(4)] gave complex 3c. The structure of 2a and 3a was obtained by X-ray diffraction studies. Density functional theory (DFT) calculations were carried out to further understand these types of oxo compounds.  相似文献   

15.
The reaction of the dimeric bis(germylene) [Ge{3,5‐(CF3)2pz}2]2 ( 2 ) with protic molybdenum hydride [Mo(H)Cp(CO)3] yielded two different products. In diethyl ether the divalent germylene readily inserts into the Mo–H σ‐bond and the product of the oxidative addition, [Ge(H){Mo}(pz)2] ( 4 ) (with pz = 3,5‐disubstituted pyrazole, 3,5‐(CF3)2pz; {Mo} = [MoCp(CO)3]), was isolated featuring a germanium(IV) hydride moiety. In toluene an interesting “cascade” reaction takes place furnishing a bis‐metal substituted digermane [{Mo}(H)(pz)Ge–Ge(pz)2{Mo}]. Although the detailed mechanism of the reaction remains the subject of speculation it seems likely that a germylene, [GeII(pz){Mo}], inserts into the germanium(IV) hydrogen bond of [Ge(H){Mo}(pz)2] under formation of a germanium‐germanium bond, which is a rare reaction behaviour.  相似文献   

16.
Tridentate (L(3)) and bidentate (L(2)) poly(pyrazolyl)methane ligands (Gn-dend)OCH(2)C(pz)(3) (1-4) and (Gn-dend)CH(3,5-Me(2)pz)(2) (pz = pyrazol-1-yl) have been used to synthesize the molybdenum(0) complexes [Mo(CO)(3)(L(3))] (G0-G3, 5-8), [Mo(CO)(4)(L(2))] (G0-G1, 13-14), and [Mo(CO)(3)(NCMe)(L(2))] (G0, 15), and the molybdenum(VI) complexes [MoCl(2)O(2)(L(2))] (9-12). The G0-G3 prefixes represent the generation of poly(aryl ether) dendrons in which the metal complexes are embedded. The molecular structures of compounds 13 and 15 have been determined by X-ray diffraction studies and the hydrodynamic radii of tricarbonyl complexes 5-8 calculated by diffusion-ordered NMR spectroscopy (DOSY). Molybdenum(VI) compounds 9-12 have also been evaluated as catalysts for olefin epoxidation, showing comparable but inferior performances than ligand-free MoCl(2)O(2), probably because of the labile coordination of L(2).  相似文献   

17.
The hydrothermal reaction of MoO(3) with BaH(3)IO(6) at 180 degrees C for 3 days results in the formation of Ba[(MoO(2))(6)(IO(4))(2)O(4)] x H(2)O (1). Under similar conditions, the reaction of Ba(OH)(2) x 8H(2)O with MoO(3) and Ba(IO(4))(2) x 6H(2)O yields Ba(3)[(MoO(2))(2)(IO(6))(2)] x 2H(2)O (2). The structure of 1, determined by single-crystal X-ray diffraction, consists of corner- and edge-sharing distorted MoO(6) octahedra that create two-dimensional slabs. Contained within this molybdenum oxide framework are approximately C(2v) tetraoxoiodate(V) anions, IO(4)(3-), that are involved in bonding with five Mo(VI) centers. The two equatorial oxygen atoms of the IO(4)(3-) anion chelate a single Mo(VI) center, whereas the axial atoms are mu(3)-oxo groups and complete the octahedra of four MoO(6) units. The coordination of the tetraoxoiodate(V) anion to these five highly electropositive centers is probably responsible for stabilizing the substantial anionic charge of this anion. The Ba(2+) cations separate the layers from one another and form long ionic contacts with neighboring oxygen atoms and a water molecule. Compound 2 also contains distorted MoO(6) octahedra. However, these solely edge-share with octahedral hexaoxoiodate(VII), IO(6)(5-), anions to form zigzagging one-dimensional, (1)(infinity)[(MoO(2))(IO(6))](3-), chains that are polar. These chains are separated from one another by Ba(2+) cations that are coordinated by additional water molecules. Bond valence sums for the iodine atoms in 1 and 2 are 5.01 and 7.03, respectively. Crystallographic data: 1, monoclinic, space group C2/c, a = 13.584(1) A, b = 7.3977(7) A, c = 20.736(2) A, beta = 108.244(2) degrees, Z = 4; 2, orthorhombic, space group Fdd2, a = 13.356(7) A, b = 45.54(2) A, c = 4.867(3) A, Z = 8.  相似文献   

18.
The preparation of a number of binuclear (salen)osmium phosphinidine and phosphiniminato complexes using various strategies are described. Treatment of [Os(VI)(N)(L(1))(sol)](X) (sol = H(2)O or MeOH) with PPh(3) affords an osmium(IV) phosphinidine complex [Os(IV){N(H)PPh(3)}(L(1))(OMe)](X) (X = PF(6)1a, ClO(4)1b). If the reaction is carried out in CH(2)Cl(2) in the presence of excess pyrazine the osmium(III) phosphinidine species [Os(III){N(H)PPh(3)}(L(1))(pz)](PF(6)) 2 can be generated. On the other hand, if the reaction is carried out in CH(2)Cl(2) in the presence of a small amount of H(2)O, a μ-oxo osmium(IV) phosphinidine complex is obtained, [(L(1)){PPh(3)N(H)}Os(IV)-O-Os(IV){N(H)PPh(3)}(L(1))](PF(6))(2)3. Furthermore, if the reaction of [Os(VI)(N)(L(1))(OH(2))]PF(6) with PPh(3) is done in the presence of 2, the μ-pyrazine species, [(L(1)){PPh(3)N(H)}Os(III)-pz-Os(III){N(H)PPh(3)}(L(1))](PF(6))(2)4 can be isolated. Novel binuclear osmium(IV) complexes can be prepared by the use of a diphosphine ligand to attack two Os(VI)≡N. Reaction of [Os(VI)(N)(L(1))(OH(2))](PF(6)) with PPh(2)-C≡C-PPh(2) or PPh(2)-(CH(2))(3)-PPh(2) in MeOH affords the binuclear complexes [(MeO)(L(1))Os(IV){N(H)PPh(2)-R-PPh(2)N(H)}Os(IV)(L(1))(OMe)](PF(6))(2) (R = C≡C 5, (CH(2))(3)6). Reaction of [Os(VI)(N)(L(2))Cl] with PPh(2)FcPPh(2) generates a novel trimetallic complex, [Cl(L(2))Os(IV){NPPh(2)-Fc-PPh(2)N}Os(IV)(L(2))Cl] 7. The structures of 1b, 2, 3, 4, 5 and 7 have been determined by X-ray crystallography.  相似文献   

19.
The new copper(I) nitro complex [(Ph(3)P)(2)N][Cu(HB(3,5-Me(2)Pz)(3))(NO(2))] (2), containing the anionic hydrotris(3,5-dimethylpyrazolyl)borate ligand, was synthesized, and its structural features were probed using X-ray crystallography. Complex 2 was found to cocrystallize with a water molecule, and X-ray crystallographic analysis showed that the resulting molecule had the structure [(Ph(3)P)(2)N][Cu(HB(3,5-Me(2)Pz)(3))(NO(2))]·H(2)O (3), containing a water hydrogen bonded to an oxygen of the nitrite moiety. This complex represents the first example in the solid state of an analogue of the nitrous acid intermediate (CuNO(2)H). A comparison of the nitrite reduction reactivity of the electron-rich ligand containing the CuNO(2) complex 2 with that of the known neutral ligand containing the CuNO(2) complex [Cu(HC(3,5-Me(2)Pz)(3))(NO(2))] (1) shows that reactivity is significantly influenced by the electron density around the copper and nitrite centers. The detailed mechanisms of nitrite reduction reactions of 1 and 2 with acetic acid were explored by using density functional theory calculations. Overall, the results of this effort show that synthetic models, based on neutral HC(3,5-Me(2)Pz)(3) and anionic [HB(3,5-Me(2)Pz)(3)](-) ligands, mimic the electronic influence of (His)(3) ligands in the environment of the type II copper center of copper nitrite reductases (Cu-NIRs).  相似文献   

20.
We have synthesized and structurally characterized three pyridylethylidene-functionalized diphosphonate-containing polyoxomolybdates, [{Mo(VI)O(3)}(2){Mo(V)(2)O(4)}{HO(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)](6-) (1), [{Mo(VI)(2)O(6)}(2){Mo(V)(2)O(4)}{O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)](8-) (2), and [{Mo(V)(2)O(4)(H(2)O)}(4){O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(4)](12-) (3). Polyanions 1-3 were prepared in a one-pot reaction of the dinuclear, dicationic {Mo(V)(2)O(4)(H(2)O)(6)}(2+) with 1-hydroxo-2-(3-pyridyl)ethylidenediphosphonate (Risedronic acid) in aqueous solution. Polyanions 1 and 2 are mixed-valent Mo(VI/V) species with open tetranuclear and hexanuclear structures, respectively, containing two diphosphonate groups. Polyanion 3 is a cyclic octanuclear structure based on four {Mo(V)(2)O(4)(H(2)O)} units and four diphosphonates. Polyanions 1 and 2 crystallized as guanidinium salts [C(NH(2))(3)](5)H[{Mo(VI)O(3)}(2){Mo(V)(2)O(4)}{HO(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)]·13H(2)O (1a) and [C(NH(2))(3)](6)H(2)[{Mo(VI)(2)O(6)}(2){Mo(V)(2)O(4)}{O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)]·10H(2)O (2a), whereas polyanion 3 crystallized as a mixed sodium-guanidinium salt, Na(8)[C(NH(2))(3)](4)[{Mo(V)(2)O(4)(H(2)O)}(4){O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(4)]·8H(2)O (3a). The compounds were characterized in the solid state by single-crystal X-ray diffraction, IR spectroscopy, and thermogravimetric and elemental analyses. The formation of polyanions 1 and 3 is very sensitive to the pH value of the reaction solution, with exclusive formation of 1 above pH 7.4 and 3 below pH 6.6. Detailed solution studies by multinuclear NMR spectrometry were performed to study the equilibrium between these two compounds. Polyanion 2 was insoluble in all common solvents. Detailed computational studies on the solution phases of 1 and 3 indicated the stability of these polyanions in solution, in complete agreement with the experimental findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号