首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Currently, there is no legal limit for methyl mercury (MeHg) in food; thus, no standardized method for the determination of MeHg in seafood exists within the European jurisdiction. In anticipation of a future legislative limit an inductively coupled plasma isotope dilution mass spectrometry (GC-ICP-ID-MS) method was developed in collaboration with the European Standardization Organization (CEN). The method comprises spiking the tissue sample with Me201Hg, followed by decomposition with tetramethylammonium hydroxide, pH adjustment and derivatization with sodium tetraethylborate, and finally organic extraction of the derivatized MeHg in a hexane phase. Subsequently, the sample is analyzed via GC-ICP-MS and the result calculated using the ID equation. The working range of the method was 0.0005-1.321 mg/kg MeHg in marine tissue, with an internal reproducibility (RSD) of 12-1%. The method was validated based on statistical measures, such as the z-scores, using the commercially available reference materials from National Institute of Standards and Technology Standard Reference Material (NIST SRM) 1566b, NIST SRM 2977 and National Research Council of Canada (NRCC) TORT 2, NRCC, DORM 3, NRCC DOLT 4, and European Reference Material (ERM) CE 464. Z-scores for all standard reference materials, except for NIST SRM 1566b, were better than 11.51. The wide range of marine tissues used during the validation ensures that the method will be applicable for measuring of MeHg in seafood matrixes of all kinds.  相似文献   

2.
The methylmercury content in two new marine bivalve mollusk tissue Standard Reference Materials (SRMs) has been certified using results of analyses from the National Institute of Standards and Technology (NIST) and two other laboratories. The certified concentrations of methylmercury were established based on the results from four and six different (independent) analytical methods, respectively, for SRM 1566b Oyster Tissue (13.2 ± 0.7 μg/kg) and SRM 2977 Mussel Tissue (organic contaminants and trace elements) (36.2 ± 1.7 μg/kg). The certified concentration of methylmercury in SRM 1566b is among the lowest in any certified reference material (CRM).  相似文献   

3.
Methods based on species specific isotope dilution were developed for the accurate and SI traceable determination of arsenobetaine (AsBet) and methylmercury (MeHg) in prawn and cuttlefish tissues by LC-MS/MS and SPME GC-ICPMS. Quantitation of AsBet and MeHg were achieved by using a 13C-enriched AsBet spike (NRC CRM CBET-1) and an enriched spike of Me198Hg (NRC CRM EMMS-1), respectively, wherein analyte mass fractions in enriched spikes were determined by reverse isotope dilution using natural abundance AsBet and MeHg primary standards. Purity of these primary standards were characterized by quantitative 1H-NMR with the use of NIST SRM 350b benzoic acid as a primary calibrator, ensuring the final measurement results traceable to SI. Validation of employed methods of ID LC-MS/MS and ID SPME GC-ICPMS was demonstrated by analysis of several biological CRMs (DORM-4, TORT-3, DOLT-5, BCR-627 and BCR-463) with satisfying results.  相似文献   

4.
He Q  Zhu Z  Hu S  Jin L 《Journal of chromatography. A》2011,1218(28):4462-4467
A novel solution cathode glow discharge (SCGD) induced vapor generation was developed as interface to on-line couple high-performance liquid chromatography (HPLC) with atomic fluorescence spectrometry (AFS) for the speciation of inorganic mercury (Hg(2+)), methyl-mercury (MeHg) and ethyl-mercury (EtHg). The decomposition of organic mercury species and the reduction of Hg(2+) could be completed in one step with this proposed SCGD induced vapor generation system. The vapor generation is extremely rapid and therefore is easy to couple with flow injection (FI) and HPLC. Compared with the conventional HPLC-CV-AFS hyphenated systems, the proposed HPLC-SCGD-AFS system is very simple in operation and eliminates auxiliary redox reagents. Parameters influencing mercury determination were optimized, such as concentration of formic acid, discharge current and argon flow rate. The method detection limits for HPLC-SCGD-AFS system were 0.67 μg L(-1) for Hg(2+), 0.55 μg L(-1) for MeHg and 1.19 μg L(-1) for EtHg, respectively. The developed method was validated by determination of certified reference material (GBW 10029, tuna fish) and was further applied for the determination of mercury in biological samples.  相似文献   

5.
This work demonstrated the feasibility of mercury speciation analysis by anion exchange chromatographic separation with inductively coupled plasma mass spectrometry detection. For the first time, by complexing with the mobile phase containing 3-mercapto-1-propanesulfonate into negatively charged complexes, fast separation of inorganic mercury (Hg2+), monomethylmercury (MeHg), ethylmercury (EtHg) and phenylmercury (PhHg) was achieved within 5 min on a 12.5-mm strong anion exchange column. The detection limits for Hg2+, MeHg, EtHg and PhHg were 0.008, 0.024, 0.029 and 0.034 μg L−1, respectively. The relative standard deviations of peak height and peak area (5.0 μg L−1 for each Hg species) were all below 3%. The determined contents of Hg2+, MeHg and total Hg in a certified reference material of fish tissue by the proposed method were in good accordance with the certified values with satisfactory recoveries. The relative errors for determining MeHg and total mercury were −2.4% and −1.2%, respectively, with an acceptable range for spike recoveries of 94–101%. Mercury speciation in 11 fish samples were then analyzed after the pretreated procedure. The mercury contents in all fish samples analyzed were found compliant with the criteria of the National Standards of China.  相似文献   

6.
A comprehensive method for simultaneous determination of methylmercury (MeHg) and ethylmercury (EtHg) in rice by capillary gas chromatography (GC) coupled on-line with atomic fluorescence spectrometry was developed. The experimental conditions, including the pyrolyzer temperature and flow rates of the make-up gas and sheath gas, were optimized in detail. The absolute detection limits (3sigma) were 0.005 ng as Hg for both MeHg and EtHg. The relative standard deviation values (n=5) for 10 ng Hg/mL of MeHg and EtHg were 2.5 and 1.3%, respectively. The method was evaluated by analyzing 2 certified reference materials (DORM-2 and GBW08508), and the determined values of MeHg and total mercury concentrations were in good agreement with the certified values. In addition, the recoveries of MeHg and EtHg spiked into a rice sample collected from Jiangsu province in China were 86 and 77%, respectively. The proposed method was applied to analysis of MeHg and EtHg in 25 rice samples cultivated in 15 provinces of China. In all samples, MeHg was detectable and no EtHg was found. The MeHg contents in rice samples ranged from 1.9 to 10.5 ng/g, accounting for 7-44% of the total mercury measured.  相似文献   

7.
In this paper, a novel automatic approach for the speciation of inorganic mercury (Hg(2+)), methylmercury (MeHg(+)) and ethylmercury (EtHg(+)) using multisyringe chromatography (MSC) coupled to cold-vapor atomic fluorescence spectrometry (CV/AFS) was developed. For the first time, the separation of mercury species was accomplished on a RP C18 monolithic column using a multi-isocratic elution program. The elution protocol involved the use of 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)-acetonitrile (99:1, v/v), followed by 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)-acetonitrile (90:10, v/v). The eluted mercury species were then oxidized under post-column UV radiation and reduced using tin(II) chloride in an acidic medium. Subsequently, the generated mercury metal were separated from the reaction mixture and further atomized in the flame atomizer and detected by AFS. Under the optimized experimental conditions, the limits of detection (3σ) were found to be 0.03, 0.11 and 0.09 μg L(-1) for MeHg(+), Hg(2+) and EtHg(+), respectively. The relative standard deviation (RSD, n=6) of the peak height for 3, 6 and 3 μg L(-1) of MeHg(+), Hg(2+) and EtHg(+) (as Hg) ranged from 2.4 to 4.0%. Compared with the conventional HPLC-CV/AFS hyphenated systems, the proposed MSC-CV/AFS system permitted a higher sampling frequency and low instrumental and operational costs. The developed method was validated by the determination of a certified reference material DORM-2 (dogfish muscle), and was further applied for the determination of mercury species environmental and biological samples.  相似文献   

8.
The methylmercury content in two new marine bivalve mollusk tissue Standard Reference Materials (SRMs) has been certified using results of analyses from the National Institute of Standards and Technology (NIST) and two other laboratories. The certified concentrations of methylmercury were established based on the results from four and six different (independent) analytical methods, respectively, for SRM 1566b Oyster Tissue (13.2 +/- 0.7 microg/kg) and SRM 2977 Mussel Tissue (organic contaminants and trace elements) (36.2 +/- 1.7 microg/kg). The certified concentration of methylmercury in SRM 1566b is among the lowest in any certified reference material (CRM).  相似文献   

9.
The measurement of different mercury compounds in human blood can provide valuable information about the type of mercury exposure. To this end, our laboratory developed a biomonitoring method for the quantification of inorganic (iHg), methyl (MeHg), and ethyl (EtHg) mercury in whole blood using a triple-spike isotope dilution (TSID) quantification method employing capillary gas chromatography (GC) and inductively coupled dynamic reaction cell mass spectrometry (ICP-DRC-MS). We used a robotic CombiPAL® sample handling station featuring twin fiber-based solid-phase microextraction (SPME) injector heads. The use of two SPME fibers significantly reduces sample analysis cycle times making this method very suitable for high sample throughput, which is a requirement for large public health biomonitoring studies. Our sample preparation procedure involved solubilization of blood samples with tetramethylammonium hydroxide (TMAH) followed by the derivatization with sodium tetra(n-propyl)borate (NaBPr4) to promote volatility of mercury species. We thoroughly investigated mercury species stability in the blood matrix during the course of sample treatment and analysis. The method accuracy for quantifying iHg, MeHg, and EtHg was validated using NIST standard reference materials (SRM 955c level 3) and the Centre de Toxicologie du Québec (CTQ) proficiency testing (PT) samples. The limit of detection (LOD) for iHg, MeHg, and EtHg in human blood was determined to be 0.27, 0.12, and 0.16 μg/L, respectively.
Figure
?  相似文献   

10.
NIST has developed an extensive collection of environmental SRMs, starting with fuel and biologically related materials in the late 1960s and now encompassing all sectors of environmental research. Advances in analytical methodology, including multi-element isotope-dilution mass spectrometry (IDMS) and expanded instrumental neutron-activation analysis (INAA) capabilities, enable value assignment based on fewer but better-characterized independent analytical techniques. The special advantages of IDMS for determination of S and Hg and for multi-element characterization of small-sample air particulate matter (SRM 2783) by IDMS and INAA are emphasized. Developments in materials production include the issuance of fresh-frozen biological materials and of jet-milled natural-matrix materials with improved homogeneity, including highly homogeneous air particulate matter and sediment SRMs for small-sample analytical techniques.  相似文献   

11.
This paper describes the development of two independent analytical methods for the extraction and quantification of methylmercury from marine biota. The procedures involve microwave extraction, followed by derivatization and either headspace solid-phase microextraction (SPME) with a polydimethylsiloxane (PDMS)-coated silica fiber or back-extraction into iso-octane. The identification and quantification of the extracted compounds is carried out by capillary gas chromatography/mass spectrometric (GC/MS) and inductively coupled plasma mass spectrometric (GC/ICP-MS) detection. Both methods were validated for the determination of methylmercury (MeHg) concentrations in a variety of biological standard reference materials (SRMs) including fresh-frozen tissue homogenates of SRM 1946 Lake Superior fish tissue and SRM 1974a organics in mussel tissue (Mytilus edulis) and then applied to the certification effort of SRM 1947 Lake Michigan fish tissue and SRM 1974b organics in mussel tissue (Mytilus edulis). While past certifications of methylmercury in tissue SRMs have been based on two independent methods from the National Institute of Standards and Technology (NIST) and participating laboratories, the methods described within provide improved protocols and will allow future certification efforts to be based on at least two independent analytical methods within NIST.  相似文献   

12.
A novel dual-cloud point extraction (dCPE) technique is proposed in this paper for the sample pretreatment of capillary electrophoresis (CE) speciation analysis of mercury. In dCPE, cloud point was carried out twice in a sample pretreatment. First, four mercury species, methylmercury (MeHg), ethylmercury (EtHg), phenylmercury (PhHg), and inorganic mercury (Hg(II)) formed hydrophobic complexes with 1-(2-pyridylazo)-2-naphthol (PAN). After heating and centrifuging, the complexes were extracted into the formed Triton X-114 surfactant-rich phase. Instead of the direct injection or analysis, the surfactant-rich phase containing the four Hg species was treated with 150 microL 0.1% (m/v) l-cysteine aqueous solution. The four Hg species were then transferred back into aqueous phase by forming hydrophilic Hg-l-cysteine complexes. After dCPE, the aqueous phase containing the Hg-l-cysteine complexes was subjected into electrophoretic capillary for mercury speciation analysis. Because the concentration of Triton X-114 in the extract after dCPE was only around critical micelle concentration, the adsorption of surfactant on the capillary wall and its possible influence on the sample injection and separation in traditional CPE were eliminated. Plus, the hydrophobic interfering species were removed thoroughly by using dCPE resulted in significant improvement in analysis selectivity. Using 10 mL sample, 17, 15, 45, and 52 of preconcentration factors for EtHg, MeHg, PhHg, and Hg(II) were obtained. With CE separation and on-line UV detection, the detection limits were 45.2, 47.5, 4.1, and 10.0 microg L(-1) (as Hg) for EtHg, MeHg, PhHg, and Hg(II), respectively. As an analysis method, the present dCPE-CE with UV detection obtained similar detection limits as of some CE-inductively coupled plasma mass spectrometry (ICPMS) hyphenation technique, but with simple instrumental setup and obviously low costs. Its utilization for Hg speciation was validated by the analysis of the spiked natural water and tilapia muscle samples.  相似文献   

13.
Standard reference materials for foods and dietary supplements   总被引:1,自引:0,他引:1  
Well-characterized certified reference materials are needed by laboratories in the food testing, dietary supplement, and nutrition communities to facilitate compliance with labeling laws and improve the accuracy of information provided on product labels, so that consumers can make good choices. As a result of the enactment of the Nutrition Labeling and Education Act of 1990 and the Infant Formula Act of 1980, the National Institute of Standards and Technology (NIST) worked to develop a series of food-matrix standard reference materials (SRMs) characterized for nutrient concentrations. These include SRM 1544 Fatty Acids and Cholesterol in a Frozen Diet Composite, SRM 1546 Meat Homogenate, SRM 1548a Typical Diet, SRM 1566b Oyster Tissue, SRM 1846 Infant Formula, SRM 1946 Lake Superior Fish Tissue, SRM 1947 Lake Michigan Fish Tissue, SRM 2383 Baby Food Composite, SRM 2384 Baking Chocolate, SRM 2385 Slurried Spinach, and SRM 2387 Peanut Butter. With the enactment of the Dietary Supplement Health and Education Act of 1994, NIST has been working to develop suites of dietary supplement SRMs characterized for active and marker compounds and for toxic elements and pesticides, where appropriate. An updated SRM 1588b Organics in Cod Liver Oil, a suite of ephedra-containing materials (SRMs 3240–3245), a carrot extract in oil (SRM 3276), and a suite of ginkgo-containing materials (SRMs 3246–3248) are available. Several other materials are currently in preparation. Dietary supplements are sometimes provided in forms that are food-like; for these, values may also be assigned for nutrients, for example SRM 3244 Ephedra-Containing Protein Powder. Both the food-matrix and dietary supplement reference materials are intended primarily for validation of analytical methods. They may also be used as “primary control materials” in assignment of values to in-house (secondary) control materials to confirm accuracy and to establish measurement traceability to NIST.  相似文献   

14.
Due to the limited number of environmental matrix certified reference materials (CRMs) with assigned values for natural levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), an interlaboratory study was undertaken by the National Institute of Standards and Technology (NIST) and Environment Canada to establish reference concentration values for selected PCDD/Fs in two well-characterized NIST Standard Reference Materials (SRMs): SRM 1649a (Urban Dust) and SRM 1944 (New York/New Jersey Waterway Sediment). Results from 14 laboratories were used to provide reference values for the seventeen 2, 3, 7, 8-substituted PCDD/F congeners, the totals for individual tetra- through hepta-substituted PCDD/F homologues, and the total amount of tetra-through hepta-substituted PCDD/Fs. The mass fractions for the individual 2, 3, 7, 8-substituted congeners range from approximately 0.01 μg/kg to 7 μg/kg dry mass.  相似文献   

15.
A fully automated system for the direct determination of methylmercury (MeHg), ethylmercury (EtHg), phenylmercury (PhHg), and inorganic mercury (Hg(II)) at the ng/L level is described. It is based on solid phase extraction preconcentration incorporated in a flow injection (FI) system, high performance liquid chromatography (HPLC) separation, reduction combined with thermolysis and determination by cold vapour atomic absorption spectrometry (CVAAS). For preconcentration a microcolumn of bonded silica with octadecyl functional groups (C18 reversed phase material) was used as a sorbent for the mercury complexes formed on-line with ammonium pyrrolidine dithiocarbamate. Retained mercury species are eluted with a methanol-acetonitrile-water mixture and subjected to separation on an octadecylsilane (ODS) column before determination by CVAAS. The sensitivity of organo-mercury determination could be improved by using NaBH4 as a reductant combined with a thermolysis step. In order to perform on-line measurements the preconcentration microcolumn was mounted in a pressure-tight casing. Limits of detection for MeHg, EtHg, PhHg and Hg(II) employing a sample volume of 58.5 mL were 9, 6, 10 and 5 ng/L, respectively. The relative standard deviation (RSD) calculated from 9 repeated measurements was found to be 3.6%, 5.5%, 10.4% and 7.6% for MeHg, EtHg, PhHg and Hg(II), respectively. Finally, the application of this method for speciation of mercury in fish and human urine is described.  相似文献   

16.
An analytical procedure for determining methyl- and ethylmercury (MeHg/EtHg) in natural waters is described. MeHg/EtHg was preconcentrated from water on a sulfhydryl cotton fiber (SCF) adsorbent and eluted with a small volume of a mixture of 1 M hydrochloric acid and 2 M sodium chloride. The eluate was extracted with benzene. The measurements of MeHg/EtHg in benzene extract were determined by gas chromatography with electron capture detector. The detection limit for MeHg/EtHg was about 0.04 ng L-1 using a 20 L water sample. The precision was about 20%. The application of the proposed method to one snow and four freshwater samples varying in humus content is described. The MeHg concentrations found in different freshwater samples were ranged from 0.09 to 0.22 ng L-1 and the recoveries of spiked MeHg were ranged from 42 to 68% which were strongly correlated to the content of humic substances. The MeHg concentration found in snow was 0.28 ng L-1 and the recovery was 79%. The analytical results of MeHg concentration in freshwater samples are discussed in relation to the pH used in the preconcentration, the humus content, the fraction of methylmercury in organic bound mercury and mercury in fish.  相似文献   

17.
Liu Z  Zhu Z  Wu Q  Hu S  Zheng H 《The Analyst》2011,136(21):4539-4544
This paper describes a low-temperature dielectric barrier discharge (DBD)-plasma induced vaporization technique using mercury as a model analyte. The evaporation and atomization of dissolved mercury species in the sample solution can be achieved rapidly in one step, allowing mercury to be directly detected by atomic fluorescence spectrometry. The DBD plasma was generated concentrically in-between two quartz tube (outer tube: i.d. 5 mm and o.d. 6 mm, inner tube: i.d. 2 mm and o.d. 3 mm). A copper electrode was embedded inside the inner quartz tube and sample solution was applied onto the outer surface of the inner tube. The effects of operating parameters such as plasma power, plasma gas identity, plasma gas flow rate and interferences from concomitant elements have been investigated. The difference in the sensitivities of Hg(2+), methylmercury (MeHg) and ethylmercury (EtHg) was found to be negligible in the presence of formic acid (≥1% v/v). The analytical performance of the present technique was evaluated under optimized conditions. The limits of detection were calculated to be 0.02 ng mL(-1) for Hg(2+), MeHg and EtHg, and repeatability was 6.2%, 4.9% and 4.3% RSD (n = 11) for 1 ng mL(-1) of Hg(2+), MeHg and EtHg, respectively. This provides a simple mercury detection method for small-volume samples with an absolute limit of detection at femtogram level. The accuracy of the system was verified by the determination of mercury in reference materials including freeze-dried urine ZK020-2, simulated water matrix reference material GBW(E) 080392 and tuna fish GBW10029, and the concentration of mercury determined by the present method agreed well with the reference values.  相似文献   

18.
In this study, a method of pretreatment and speciation analysis of mercury by dispersive liquid–liquid microextraction along with CE was developed. The method was based on the fact that mercury species including methylmercury (MeHg), ethylmercury (EtHg), phenylmercury (PhHg), and Hg(II) were complexed with 1‐(2‐pyridylazo)‐2‐naphthol to form hydrophobic chelates and l ‐cysteine could displace 1‐(2‐pyridylazo)‐2‐naphthol to form hydrophilic chelates with the four mercury species. Factors affecting complex formation and extraction efficiency, such as pH value, type, and volume of extractive solvent and disperser solvent, concentration of the chelating agent, ultrasonic time, and buffer solution were investigated. Under the optimal conditions, the enrichment factors were 102, 118, 547, and 46, and the LODs were 1.79, 1.62, 0.23, and 1.50 μg/L for MeHg, EtHg, PhHg, and Hg(II), respectively. Method precisions (RSD, n = 5) were in the range of 0.29–0.54% for migration time, and 3.08–7.80% for peak area. Satisfactory recoveries ranging from 82.38 to 98.76% were obtained with seawater, lake, and tap water samples spiked at three concentration levels, respectively, with RSD (n = 5) of 1.98–7.18%. This method was demonstrated to be simple, convenient, rapid, cost‐effective, and environmentally benign, and could be used as an ideal alternative to existing methods for analyzing trace residues of mercury species in water samples.  相似文献   

19.
The National Institute of Standards and Technology (NIST) is developing a wide variety of Standard Reference Materials (SRMs) to support measurements of vitamins and other nutrients in foods. Previously, NIST has provided SRMs with values assigned for the folate vitamer, folic acid (pteroylglutamic acid), which is fortified in several foods due to its role in prevention of neural tube defects. In order to expand the number of food-based SRMs with values assigned for folic acid, as well as additional endogenous folates, NIST has developed methods that include trienzyme digestion and isotope-dilution liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis. Sample preparation was optimized for each individual food type, but all samples were analyzed under the same LC-MS/MS conditions. The application of these methods resulted in folic acid values for SRM 1849a Infant/Adult Nutritional Formula and SRM 3233 Fortified Breakfast Cereal of (2.33?±?0.06) μg/g and (16.0?±?0.7) μg/g, respectively. In addition, the endogenous folate vitamer 5-methlytetrahydrofolate (5-MTHF) was detected and quantified in SRM 1849a Infant/Adult Nutritional Formula, candidate SRM 1549a Whole Milk Powder, and candidate SRM 1845a Whole Egg Powder, resulting in values of (0.0839?±?0.0071) μg/g, (0.211?±?0.014) μg/g, and (0.838?±?0.044) μg/g, respectively. SRM 1849a Infant/Adult Nutritional Formula is the first food-based NIST SRM to possess a reference value for 5-MTHF and the first certified reference material to have an assigned 5-MTHF value based on LC-MS/MS. The values obtained for folic acid and 5-MTHF by LC-MS/MS will be incorporated into the final value assignments for all these food-based SRMs.  相似文献   

20.
Recent developments in food-matrix Reference Materials at NIST   总被引:1,自引:0,他引:1  
Since 1996, the National Institute of Standards and Technology (NIST) has developed several food-matrix Standard Reference Materials (SRMs) characterized for nutrient concentrations. These include SRM 1544 Fatty Acids and Cholesterol in a Frozen Diet Composite, SRM 1546 Meat Homogenate, SRM 1548a Typical Diet, SRM 1566b Oyster Tissue, SRM 1846 Infant Formula, and SRM 2383 Baby Food Composite. Three additional materials--SRM 1946 Lake Superior Fish Tissue, SRM 2384 Baking Chocolate, and SRM 2385 Spinach--are in preparation. NIST also recently assigned values for proximate (fat, protein, etc.), individual fatty acid, and total dietary fiber concentrations in a number of existing SRMs and reference materials (RMs) that previously had values assigned for their elemental composition. NIST has used several modes for assignment of analyte concentrations in the food-matrix RMs, including the use of data provided by collaborating laboratories, alone and in combination with NIST data. The use of data provided by collaborating food industry and contract laboratories for the analysis of food-matrix RMs has enabled NIST to provide assigned values for many analytes that NIST does not have the resources or analytical expertise to measure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号