共查询到20条相似文献,搜索用时 46 毫秒
1.
利用颗粒离散元方法,并结合接触力学理论,对自黏连、弹塑性颗粒聚合体碰撞破损的细观力学机理进行了模拟研究。在颗粒间塑性变形存在的条件下,研究了颗粒物碰撞损伤。将弹性颗粒体碰撞与弹塑性颗粒体碰撞结果作了比较。结果表明:其他同等条件下,与弹性颗粒聚合体相比,弹塑性颗粒聚合体的损伤模式多为衰变或解体,而非断裂,其原由可以归结为塑性变形引起的额外能量损耗;其他同等条件下,与弹性颗粒聚合体比较而言,弹塑性颗粒聚合体碰撞加载阶段平板撞击力波动振幅较小,加载时间较长,撞击力峰值较大,且峰值出现的时间较晚,而损伤率却较大,其原因可以归结为颗粒间塑性变形对动能损耗、局部结构变化、内部力传播的影响。 相似文献
2.
本研究旨在探索一种基于图神经网络(GNN)加速离散元法(DEM)计算的新模型, 以提高颗粒流模拟的计算效率和精度. 传统DEM方法尽管精确, 但计算耗时长. GNN具有模拟DEM的天然优势, 在GNN中颗粒表示为节点, 颗粒的相互作用表示为边. 提出的加速模型包含了两个GNN, 分别是颗粒-颗粒图神经网络(P-P GNN)和颗粒-边界图神经网络(P-W GNN), 能够分别学习颗粒-颗粒和颗粒-边界接触信息. 通过水平滚筒、倾斜滚筒和漏斗堆积3种颗粒流场景的模拟, 验证了该模型的有效性和优越性. 结果表明, 利用GNN模型能够有效地捕捉颗粒流中的复杂接触关系, 极大地提高了计算速度, 相较于传统DEM实现了约30倍的加速. 其次, 模型在不同颗粒流场景下单步预测均表现出高精度, 并且在宏观特征预测上表现优异, 能够准确预测颗粒流的休止角、温度以及重心变化等. 另外, 文章还研究了超参数对预测结果的影响, 如临界距离和GNN的层数, 合适的临界距离可以限制颗粒穿过边界, GNN的层数在3 ~ 10层对预测结果没有显著影响, 这为进一步优化GNN模型应用于颗粒流模拟提供了研究基础.
相似文献3.
4.
离散元法研究的评述 总被引:51,自引:2,他引:51
介绍了离散元法的基本理论、计算方法及其应用的现状和最新进展.从离散元法的离散模型特点及便于甄别与其它数值计算方法的关系的角度给予离散元法一个比较宽松的定义.在此基础上阐明了离散元方法与刚体-弹簧模型(rigid body spring model, RBSM)方法,不连续变形分析(discontinuous deformation analysis, DDA)方法,分子动力学(moleculardynamics, MD)方法,三维离散元(discrete meso-element dynamicmethod, DM$^2$)方法及无网格方法(meshless method)等数值计算方法的关系, 并讨论了离散元法研究中亟待解决的问题和今后的发展方向. 相似文献
5.
粉末和颗粒材料常常以聚合体(agglomerate,还可译成结块, 聚团等)的形式存在.无论是自然环境中还是工业处理过程中, 微小颗粒聚合体碰撞破损是一常见物理现象.近十几年来, 对颗粒聚合体碰撞研究在试验和数值模拟方面均取得了很大的进展.特别是利用颗粒离散元方法, 结合经典接触力学理论, 对微米颗粒聚合体碰撞破损的细观力学机理进行的研究, 取得了很多重要成果.基本形成了较为完善的模拟分析方法, 提出了许多新概念, 形成了目前适于分析研究的专用分析程序.本文介绍了目前国际上颗粒聚合体碰撞破损模拟研究的一般方法和理论, 总结了现有的主要研究内容及成果, 并提出一些研究展望. 相似文献
6.
7.
8.
针对颗粒层横向推移过程,展开了物理试验及离散元仿真分析.采用物理试验方法对颗粒的物性参数进行了测定,并实测了颗粒层推移过程的推移力大小,进行了颗粒层横向推移过程离散元仿真模型的调试,通过仿真-试验结果的对比分析验证了仿真模型的合理性.利用所建立的仿真模型分析出:推移力斜率与静摩擦系数呈近似正比关系,颗粒堆积坡角度也随静摩擦系数的增大而增大;发现了摩擦系数增大造成推移力增大的力链机理,推板倾角增大会降低推移力增大速率,使推移力转变点位置靠近终点墙及增大竖直方向附加力. 相似文献
9.
为阐明粒径分布对铁粉压制中体系内部细观力学行为的影响, 基于离散元理论, 通过改变铁粉颗粒粒径分布建立压制模型, 结合力链提取方法, 通过对力链空间分布、力链数目、力链长度和力链方向性的分析, 探究粒径分布对力链演化的影响机理. 研究结果表明: 不同粒径分布的粉体压制时形成的力链空间分布具有差异, 粒径分布范围越小, 形成的力链分布越集中, 反之, 粒径分布范围越大, 形成的力链分布越松散且均匀; 在粉末压制时, 粒径分布对力链数目也有影响, 具体表现为随着粉体的粒径分布范围变大, 力链总数逐渐减少; 粉体的粒径分布对颗粒形成短力链的数目起着显著影响, 而对力链长度的影响较为有限; 随着粒径分布范围的增大, 力链的方向由均匀分布逐渐集中在特定角度方向, 表现出一定各向异性, 形成的交叉力链网络结构有利于提高粉体致密化程度. 本文为从粉体粒径分布影响层面拓展粉末压制细观力学理论提供基础, 亦为进一步结合粉体粒径分布及体系内力链演变过程改善粉末致密化行为提供指导. 相似文献
10.
11.
Mixing behaviors of equal-sized glass beads in a rotating drum were investigated by both DEM simula- tions and experiments. The experiments indicated that higher rotation speed can significantly enhance mixing. The particle profiles predicted by 2D DEM simulation were compared with the experimental results from a quasi-2D drum, showing inconsistency due to reduction of contacts in the single-layer 2D simulation which makes the driving friction weaker than that in the quasi-2D test, better results could be reached by specifying a higher frictional coefficient between the particles and the cylinder wall. In order to explore the influences of physical properties (density, size or friction) on mixing behavior, numerical 2D simulations were carried out systematically, in which one examined specific property being examined was exaggerated while the others were kept the same as that in the control group. The DEM simulations reveal that particle density and size are the dominating factors affecting mixing behaviors, while the effect of frictional coefficient is less significant. However, segregation due to any of the factors can be diminished by specifying a proper particle size distribution (multi-size with lower size ratio). 2009 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved. 相似文献
12.
The behavior of granular materials subjected to continuous vertical vibrations is dependent on a variety of factors, including how energetically the containment vessel is shaken as well as particle properties. Motivation for the investigation reported here is based on phenomenon in which bulk solids attain an increase in density upon relaxation. The results of a detailed, discrete element study designed to examine the dynamic state of a granular material is presented, in which particles are represented as inelastic, frictional spheres. The phase in which the assembly finds itself immediately before vibrations are stopped is quantified by computing depth profiles of the translational energy ratio R in conjunction with profiles of solids fraction ν and granular temperature T. The use of particles that are more frictional tends to hinder or delay thermalization, while particle restitution coefficient plays a role when the flow is collision dominated. The structure before vibrations are applied plays an important role in determining the depth profiles and the phase pattern only at low accelerations. On the other hand, large accelerations can easily dislodge the poured configuration very quickly so that the initial condition is not major factor in the phase pattern. 相似文献
13.
Colin Thornton 《中国颗粒学报》2010,8(2)
The Discrete Element Method (DEM) was originally devised by Cundall and Strack (1979), as a technique to examine the micromechanics of granular media with the anticipation that this would lead to more physically reliable continuum theories to describe the quasi-static deformation of granular material such as sand. However, the methodology models the evolution of a system of particles as a dynamic process. Consequently there have been numerous publications of the application of DEM to an increasingly wider v... 相似文献
14.
15.
Microstructure models at the grain size level open new potentials for the numerical investigation of micromechanical damage and fracturing. This paper presents a strategy to model heterogeneous brittle structures composed of binder and aggregate using the Discrete Element Method (DEM). A discretisation concept for both components was developed and implemented using spherical particles as discrete elements. The aggregate grains were modelled by clusters of these particles. Special routines were developed to generate specimens, to simulate laboratory tests and to analyse these simulations. Methods were developed to calibrate homogeneous and heterogeneous material by the determination of appropriate constitutive laws and their corresponding parameters. The simulation strategy allows to distinguish in detail between inter- and intra-granular microfracturing, between shear- and tensile-cracking and between microcracks within or between the different components of the heterogeneous material. Exemplarily, selected simulation results are presented for MgO-concrete. 相似文献
16.
A numerical simulation of stochastic damage evolution process in the condition of low cycle fatigue loading is discussed. The relations between damage variables and micro-cracks are obtained by means of the micro-mechanics model of the representative volume element proposed by Lemaitre and Dufailly[10]. The stochastic initial damage values are introduced in consideration of the inherent micro-defects in materials. The model combined with a finite element method is applied to simulate the damage evolution process under low cycle fatigue loading. The micro-cracks on the sur face of a specimen of 19Mn6 alloy steel are measured with a replica technique. The numerical results show that the nonhomogeneity of damage and the localization of the fatigue failure are well shown by the proposed simulations, and the fatigue lives are reasonably predicted. 相似文献
17.
Mixing behaviors of equal-sized glass beads in a rotating drum were investigated by both DEM simulations and experiments. The experiments indicated that higher rotation speed can significantly enhance mixing. The particle profiles predicted by 2D DEM simulation were compared with the experimental results from a quasi-2D drum, showing inconsistency due to reduction of contacts in the single-layer 2D simulation which makes the driving friction weaker than that in the quasi-2D test, better results could be rea... 相似文献
18.
Numerical simulations of heat transfer in non-isothermal particulate flows are important to better understand the flow pattern. The complexity of numerical algorithms coupling the heat and mass transfer and the considerable computational resources required limit the number of such direct simulations that can be reasonably performed. We suggest a Distributed Lagrange Multiplier/Fictitious Domain (DLM/FD) method to compute the temperature distribution and the heat exchange between the fluid and solid phases. The Boussinesq approximation is considered for the flow/temperature fields coupling. We employ a Finite Element Method (FEM) to solve the fluid flow conservation equations for mass, momentum and energy. The motion of particles is computed by a Discrete Element Method (DEM). On each particle, heat transfer is solved using a FEM. For each class of particles, we generate a single FEM grid and translate/rotate it at each time step to match the physical configuration of each particle. Distributed Lagrange multipliers for both the velocity and temperature fields are introduced to treat the fluid/solid interaction. This work is an extension of the method we proposed in Yu et al. (2006). Two two-dimensional (2D) test cases are proposed to validate the implementation by comparing our computational results with those reported in the literature. Finally, the sedimentation of a single sphere in a semi-infinite channel is presented and the results are discussed. 相似文献
19.
低周疲劳随机损伤过程的有限元模拟 总被引:6,自引:0,他引:6
讨论了一种低周疲劳下随机损伤演变过程 数值模拟方法,借助于Lemaitre&Dufailly给出的代表性体元的微观力学模型,建立了损伤与微裂纹尺寸的关系,采用随机初始损伤反映材料中固的的微缺陷,将所得模型与有限元结合对低周疲劳损伤过程进行了数值模拟。 相似文献
20.
Advances in the understanding of particle dynamics and their trajectories and the resultant erosion of solid surfaces are reviewed. Particular attention is given to the calculation procedures used in the analysis of gas-particle flows, always with the intention of application to turbo-machines. One, two and three-dimensional analyses are considered and the limitations of each are discussed. As in the analysis of a real fluid flows, resort is made to empirical correlations of many phenomena and, even then, the predictions of particle trajectories are restricted. The correlation and restrictions are discussed where appropriate. 相似文献