首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two independent bis(3,5‐di­methyl­pyrazole)silver(I) cations in crystalline [Ag(C5H7N2)2]NO3 display N—Ag—N angles of 175.51 (14) and 174.44 (13)°, and an average Ag—N distance of 2.124 (5) Å. The nitrate anion is situated between [Ag(C5H7N2)2]+ units and interacts via hydrogen bonds with the NH groups. The two 3,5‐di­methyl­pyrazole ligands are trans about the silver center. Only a small deviation from linearity is observed in the coordination around silver.  相似文献   

2.
In the title compound {alternative name: poly­[silver(I)‐μ‐(3‐­amino‐2‐chloro­pyridine)‐μ‐nitr­ato]}, [Ag(NO3)(C5H5ClN2)]n the AgI atom is in an irregular AgN2O3 geometry, surrounded by one pyridyl N atom [Ag—N 2.283 (5) Å], one amine N atom [Ag—N 2.364 (6) Å] and three O atoms from different nitrate ions [Ag—O 2.510 (6)–2.707 (6) Å]. The Ag ions are bridged by the 3‐amino‐2‐chloro­pyridine ligands into helical chains. Adjacent uniform chiral chains are further interlinked through the NO3 bridges into an interesting two‐dimensional coordination network in the solid.  相似文献   

3.
In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐nico­tinato‐κ2N:O], [Ag(C6H4NO2)(C10H9N3)]n, the AgI atom is tetracoordinated by two N atoms from the di‐2‐pyridyl­amine (BPA) ligand [Ag—N = 2.3785 (18) and 2.3298 (18) Å] and by one N atom and one carboxyl­ate O atom from nicotinate ligands [Ag—N = 2.2827 (15) Å and Ag—O = 2.3636 (14) Å]. Bridging by nicotinate N and O atoms generates a polymeric chain structure, which extends along [100]. The carboxyl O atom not bonded to the Ag atom takes part in an intrachain C—H⋯O hydrogen bond, further stabilizing the chain. Pairs of chains are linked by N—H⋯O hydrogen bonds to generate ribbons. There are no π–π interactions in this complex. In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐2,6‐di­hydroxy­benzoato‐κ2O1:O2], [Ag(C7H5O4)(C10H9N3)]n, the AgI atom has a distorted tetrahedral coordination, with three strong bonds to two pyridine N atoms from the BPA ligand [Ag—N = 2.286 (5) and 2.320 (5) Å] and to one carboxyl­ate O atom from the 2,6‐di­hydroxy­benzoate ligand [Ag—O = 2.222 (4) Å]; the fourth, weaker, Ag‐atom coordination is to one of the phenol O atoms [Ag⋯O = 2.703 (4) Å] of an adjacent moiety, and this interaction generates a polymeric chain along [100]. Pairs of chains are linked about inversion centers by N—H⋯O hydrogen bonds to form ribbons, within which there are π–π interactions. The ribbons are linked about inversion centers by pairs of C—H⋯O hydrogen bonds and additional π–π interactions between inversion‐related pairs of 2,6‐di­hydroxy­benzoate ligands to generate a three‐dimensional network.  相似文献   

4.
The crystal structure of the title compound, [Mn(NO3)(C10H8N2)(H2O)3]NO3, contains a monomeric [Mn(NO3)(bpy)(H2O)3]+ cation (bpy is 2,2′‐bi­pyridine) and a nitrate anion. The MnII ion is coordinated by one chelating bpy [Mn—N 2.241 (3) and 2.259 (3) Å], three water mol­ecules [Mn—O 2.120 (3)–2.188 (3) Å] and a nitrate ligand [Mn—O 2.228 (2) Å] in a distorted octahedral geometry. There are O?H—O hydrogen‐bonding interactions between the ligated water mol­ecules and the ligated and unligated nitrate anions, resulting in double columns of stacked cations and anions.  相似文献   

5.
The structure of the title compound, [Cu(C6H7N)2{Ag(CN)2}2]n, is made up of neutral zigzag chains of [–NC–Ag–CN–Cu(4‐Mepy)2{Ag(CN)2}–NC–Ag–CN–] (4‐Mepy is 4‐methyl­pyridine). Neighbouring chains are linked by weak argentophilic interactions, with Ag?Ag distances of 3.2322 (12) Å. The Cu atom, which lies on a twofold rotation axis, is pentacoordinated by one monodentate Ag(CN)2? anion [Cu—N 1.985 (3) Å], the atoms of which lie on the same rotation axis, and by bridging di­cyano­argentate anions [2 × Cu—N 2.0827 (19) Å], with Ag atoms on inversion centres. The coordination polyhedron is completed by two 4‐Mepy mol­ecules [2 × Cu—N 2.038 (2) Å], which occupy the axial positions of a distorted trigonal bipyramid.  相似文献   

6.
In the title two‐coordinate silver compound, [Ag(C3­H9­P)2]­PF6, the cation has crystallographically imposed mirror symmetry, and approximates very closely to m (D3d) symmetry with fully staggered methyl groups in the solid state. The Ag atom has a nearly linear coordination geometry, with a P—Ag—P angle of 178.70 (4)°. The Ag—P bond lengths are 2.3746 (12) and 2.3783 (12) Å, which are ­significantly longer than the Au—P bond length of 2.304 (1) Å in the analogous two‐coordinate gold cation. The lack of intra­molecular steric effects within the present cations containing tri­methyl­phosphine (cone angle 118°), compared with those in known cations containing trimesityl­phosphine (cone angle 212°), provides a better comparison of M—P distances and thus more conclusive evidence that Au really is smaller than Ag.  相似文献   

7.
The asymmetric unit of the title compound, [Ag(NH3)2][Ag(C7H5N2O4)2], comprises half an [Ag(NH3)2]+ cation and half an [Ag(anbz)2] anion (anbz is 2‐amino‐5‐nitrobenzoate). Both AgI ions are located on inversion centres. The cation has a linear coordination geometry with two symmetry‐related ammine ligands. The AgI cation in the anionic part shows a rare four‐coordinate planar geometry completed by two chelating symmetry‐related anbz ligands. Intra‐ and intermolecular N—H...O hydrogen bonds create a slightly undulating two‐dimensional supramolecular sheet. Adjacent sheets are only ca 3.3 Å apart. Ag...O, Ag...N and π–π stacking interactions consolidate the packing of the molecules in the solid state.  相似文献   

8.
For charge balance in the title compound, (H5O2)(C3H7N6)3[Mn(C7H3NO4)2]2(OH)·C7H5NO4·5H2O, it is assumed that the metal atom site is disordered MnII/MnIII, probably due to partial air oxidation of the starting MnII species. The formula unit of the complex contains a hydroxonium hydrate cation, H5O2+, also known as the Zundel cation, with twofold symmetry. The O...O [2.445 (10) Å] and O...H distances [1.24 (2) Å] in the H5O2+ cation indicate a strong hydrogen bond. In addition, there is a hydroxide ion that is disordered with respect to a twofold rotation axis. One of the melaminium groups and the pyridine‐2,6‐dicarboxylate (pydc) ligand also reside on crystallographic twofold axes. The coordination environment of the Mn ion is distorted octahedral. Three intermolecular C=O...π interactions are observed, with distances of 3.536 (4), 3.262 (4) and 3.750 (4) Å between carboxylate C=O groups and the centroids of the aromatic rings of pydc and melaminium. There are numerous O—H...O, O—H...N, N—H...O, N—H...N and C—H...O hydrogen bonds. Most of the components of the structure are organized into one plane.  相似文献   

9.
In the title chain compound, [Ag(NO3)(C3H7NO)(C26H24P2)]n, the bis­(diphenyl­phosphino)ethane (dppe) components lie across centres of inversion. The dppe units link the Ag+ ions into chains along [100]. A nitrate anion is coordinated to the Ag atom, together with one mol­ecule of N,N‐dimethyl­formamide (DMF) solvent. At room temperature, the coordinated DMF shows a long Ag—O distance [2.620 (3) Å] and relatively large thermal motion, while at 100 K the Ag—O distance is shorter [2.5588 (19) Å] and the thermal motion is similar to that of the rest of the complex. The behaviour of the DMF mol­ecule is related to the size of the solvent pocket, viz. 146 Å3 at 293 K and 131 Å3 at 100 K.  相似文献   

10.
The title compound, [Ag(C3H6N6)2]NO3, has an alternating two‐dimensional bilayer structure supported by extensive hydrogen bonds. The [Ag(melamine)2]+ cationic monomers (melamine is 1,3,5‐triazine‐2,4,6‐triamine) are connected via N—H...N hydrogen bonds to form two‐dimensional sheets. Nitrate groups are sandwiched between two sheets through N—H...O hydrogen bonds. An almost perfectly linear coordination geometry is found for the AgI ions. The triazine ligands are slightly distorted due to π–π interactions.  相似文献   

11.
In the title complex, [Pd(C12H8FN4O2)2(C5H5N)2] or trans‐[Pd(FC6H4N=N—NC6H4NO2)(C5H5N)2], the Pd atom lies on a centre of inversion in space group P. The coordination geometry about the Pd2+ ion is square planar, with two deprotonated 3‐(2‐fluoro­phenyl)‐1‐(4‐nitro­phenyl)­triazenide ions, FC6H4N=N—NC6H4NO2?, acting as monodentate ligands (two‐electron donors), while two neutral pyridine mol­ecules complete the metal coordination sphere. The whole triazenide ligand is not planar, with the largest interplanar angle being 16.8 (5)° between the phenyl ring of the 2‐­fluorophenyl group and the plane defined by the N=N—N moiety. The Pd—N(triazenide) and Pd—N(pyridine) distances are 2.021 (3) and 2.039 (3) Å, respectively.  相似文献   

12.
The title complex, [Ag(NO3)(C13H9N)2], is the first complex of silver and acridine to be reported. The silver coordination is distorted trigonal. The N—Ag—N angle involving the N atoms of the acridine ligands is 145.84 (6)°. The nitrate ion coordinates to silver as an asymmetrically chelating bidentate ligand. The crystal structure consists of neutral complex mol­ecules linked into chains by means of attractive π–π interactions among the parallel acridine ligands.  相似文献   

13.
The title compound, [Ag(CF3O3S)(C10H9N3)]n, is a chain polymer in which neighbouring monomeric units are related by a glide plane. The silver centre is four‐coordinate; the donor atoms are one trifluoro­methane­sulfonate O atom and one pyridine N atom from each of two symmetry‐related dipyridylamines, and an additional and unexpected Ag⋯C contact [2.6464 (16) Å] is observed to a pyridine C atom. The chains are reinforced by one classical N—H⋯O and two `weak' C—H⋯O hydrogen bonds.  相似文献   

14.
The title compound, [Ag(C7H10N2)2]NO3·2H2O or [Ag(dmap)2]NO3·2H2O, where dmap is 4‐(dimethylamino)pyridine, has a distorted linear coordination geometry around the AgI ion. A novel pattern of water–nitrate hydrogen‐bonded anionic strands is formed in the c direction, with the cationic [Ag(dmap)2]+ monomers trapped between them. The AgI ion and the nitrate group atoms, as well as the water molecules (including the H atoms), are on a crystallographic mirror plane (Wyckoff position 4a). The influence of bulky methyl substituents in position 4 of the 4‐(dimethylamino)pyridine ligand on packing is discussed. The absolute structure was determined unequivocally.  相似文献   

15.
Yellow needle‐shaped crystals of the title compound, {[Ag(C30H22N4)][Ag(NO3)2]}n, were obtained by the reaction of AgNO3 and 9,10‐bis(benzimidazol‐1‐ylmethyl)anthracene (L) in a 2:1 ratio. The asymmetric unit consists of two AgI cations, one half L ligand and one nitrate anion. One AgI cation occupies a crystallographic inversion centre and links two N‐atom donors of two distinct L ligands to form an infinite one‐dimensional coordination polymer. The second AgI cation lies on a crystallographic twofold axis and is coordinated by two O‐atom donors of two nitrate anions to form an [Ag(NO3)2] counter‐ion. The polymeric chains are linked into a supramolecular framework via weak Ag...O [3.124 (5) Å] and Ag...π (2.982 Å) interactions (π is the centroid of an outer anthracene benzene ring). The π interactions contain two short Ag...C contacts [2.727 (6) and 2.765 (6) Å], which can be considered to define Ag–η2‐anthracene bonding interactions. In comparison with a previously reported binuclear AgI complex [Du, Hu, Zhang, Zeng & Bu (2008). CrystEngComm, 10 , 1866–1874], this new one‐dimensional coordination polymer was obtained by changing the metal–ligand ratio during the synthesis.  相似文献   

16.
2‐(2‐Amino­eth­yl)pyridine (2‐aep, C7H10N2) acts as a bridging ligand in bis­[μ‐2‐(2‐amino­eth­yl)pyridine‐κ2N:N′]disilver(I) dinitrate, [Ag2(2‐aep)2](NO3)2, and bis­[μ‐2‐(2‐amino­eth­yl)­pyridine‐κ2N:N′]disilver(I) diperchlorate, [Ag2(2‐aep)2](ClO4)2. Both salts contain the dinuclear [Ag2(2‐aep)2]2+ cation, which possesses a crystallographic inversion center. The Ag⋯Ag distance is 3.1163 (5) Å for the nitrate and 3.0923 (3) Å for the perchlorate salt, and may indicate a weak d10d10 inter­action in each case. Essentially linear coordination of the AgI atom is perturbed by weak coordination to the anionic O atoms. These latter inter­actions organize the dinuclear cations into one‐dimensional polymeric chains in the crystals of the two salts.  相似文献   

17.
In the title complex, {[Ag(C12H10N2)]NO3}n, the Ag atom, which is in a linear AgN2 geometry, is surrounded by two trans‐related N atoms of two bpe ligands [Ag—N = 2.173 (3) and 2.176 (3) Å; bpe is trans‐1,2‐bis(2‐pyridyl)­ethyl­ene]. The bpe ligands bridge neighbouring Ag atoms to form zigzag polymeric chains in the lattice. These adjacent one‐dimensional zigzag chains are extended into a three‐dimensional supramolecular array by strong interchain π?π interactions between the pyridyl rings of adjacent chains.  相似文献   

18.
The title compound, [Ni(C7H5O3)2(C10H24N4)], contains octahedral NiII in a centrosymmetric trans configuration with Ni—N distances of 2.0637 (17) and 2.0699 (16) Å and an Ni—O distance of 2.1100 (14) Å. The mol­ecules are linked by a single type of O—H?O hydrogen bond [O?O 2.618 (2) Å and O—H?O 161°] into two‐dimensional sheets; a singletype of N—H?O hydrogen bond [N?O 2.991 (2) Å and N—H?O 139°] links these sheets into a three‐dimensional framework.  相似文献   

19.
4‐Nitro­phenol and 4‐methyl­pyridine form a 1:1 hydrogen‐bonded dimer, C6H5NO3.C6H7N, with the mol­ecules linked by an O—H?N hydrogen bond [O?N 2.668 (2) Å]. The dihedral angle between the phenyl and pyridine ring is 57.8 (4)°. The dimers pack in a herring‐bone structure in the crystal lattice.  相似文献   

20.
The Ru—N bond distances in the title complex, [Ru(NO2)(C11H9N3)(C15H11N3)]BF4 or [Ru(NO2)(tpy)(azpy)]BF4, [tpy is 2,2′:6′,2′′‐ter­pyridine and azpy is 2‐(phenyl­azo)­pyridine], are Ru—Npy 2.063 (4), Ru—Nazo 2.036 (4), Ru—Nnitro 2.066 (3) Å, and Ru—Ntpy 2.082 (4), 1.982 (3) and 2.074 (4) Å. The azo N atom is trans to the nitro group. The azo N=N bond length is 1.265 (5) Å, which is the shortest found in such complexes to date. This indicates a multiple bond between Ru and the N atom of the nitro group, and π‐­backbonding [dπ(Ru) π*(azo)] is decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号