首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The title compound, C7H8FO6PS·H2O, contains both phospho­nic and sulfonic acid functionalities. An extensive network of O—H?O hydrogen bonds is present in the crystal structure. The three acidic protons are associated with the phospho­nate group. Two protons experience typical hydrogen‐bond contacts with the sulfonate‐O atoms, while the third has a longer covalent bond of 1.05 (3) Å to the phospho­nate‐O atom and a short hydrogen‐bond contact of 1.38 (3) Å to the water O atom (all O—H?O angles are in the range 162–175°). The sulfonate group is positioned so that one S—O bond is nearly coplanar with the phenyl ring [torsion angle O—S—C—C ?8.6 (2)°]. The phospho­nate group is oriented approximately perpendicular to the ring [torsion angle P—C—C—C 99.2 (2)°] with one P—O bond anti to the benzyl C—C bond. The mol­ecules pack in layers in the bc plane with the water mol­ecules in between adjacent pairs of inverted layers.  相似文献   

2.
In the title compound, 4‐(3β‐hydroxy‐17‐oxoandrost‐5‐en‐16‐ylidenemethyl)benzonitrile, C27H31NO2, rings A and C of the steroid nucleus are in chair conformations. The central six‐membered ring B is in an 8β,9α‐half‐chair conformation, while the five‐membered ring D adopts a 13β,14α‐half‐chair conformation. The cyano­benzyl­idene moiety has an E configuration with respect to the carbonyl group at position C17. The dihedral angle between the planes of the steroid nucleus and the cyano­benzyl­idene moiety is 22.61 (15)°. Intermolecular O—H⃛N hydrogen bonds formed between the hydroxyl group of the steroid and the N atom of the cyano­benzyl­idene moiety of symmetry‐related mol­ecules link the steroid mol­ecules into chains which run parallel to the b axis.  相似文献   

3.
In the title compound, C24H20Br2N2O4S, the indole ring system is planar and the S atom has a distorted tetrahedral configuration. The sulfonyl‐bound phenyl ring is orthogonal to the indole ring system and the conformation of the phenyl­sulfonyl substituent with respect to the indole moiety is influenced by intramolecular C—H⃛O hydrogen bonds involving the two sulfonyl O atoms. The mean plane through the acetyl­amido group makes a dihedral angle of 57.0 (1)° with the phenyl ring of the benzyl moiety. In the crystal, glide‐related mol­ecules are linked together by N—H⃛O hydrogen bonds and C—H⃛π interactions to form molecular chains, which extend through the crystal. Inversion‐related chains are interlinked by C—H⃛π interactions to form molecular layers parallel to the bc plane. These layers are interconnected through π–π interactions involving the five‐ and six‐membered rings of the indole moiety.  相似文献   

4.
The mol­ecule of the title compound {systematic name: di‐μ‐sulfido‐bis[di­aqua(1,4,7,10,13,16‐hexaoxa­cyclo­octade­cane‐κ6O)barium(II)] bis­[1,2‐benzisothiazol‐3(2H)‐one 1,1‐dioxide]}, [Ba2S2(C12H24O6)2(H2O)4](C7H5NO3S)2, lies on an inversion centre. The BaII atom encapsulated by the 18‐crown‐6 ring is coordinated by the six O atoms of the crown, two water O atoms and two bridging S atoms. The four‐membered ring composed of the BaII atoms and the bridging S atoms makes a dihedral angle of 67.1 (1)° with the crown‐ether ring. The aromatic ring system of the saccharin moiety is essentially planar. The packing is built up from layers of the mol­ecules and is stabilized by three intermolecular O—H?O hydrogen bonds.  相似文献   

5.
α‐Oxo­benzene­acetic (phenyl­glyoxy­lic) acid, C8H6O3, adopts a transoid di­carbonyl conformation in the solid state, with the carboxyl group rotated 44.4 (1)° from the nearly planar benzoyl moiety. The heterochiral acid‐to‐ketone catemers [O?O = 2.686 (3) and H?O = 1.78 (4) Å] have a second, longer, intermolecular O—H?O contact to a carboxyl sp3 O atom [O?O = 3.274 (2) and H?O = 2.72 (4) Å], with each flat ribbon‐like chain lying in the bc plane and extending in the c direction. In α‐oxo‐2,4,6‐tri­methyl­benzene­acetic (mesityl­glyoxy­lic) acid, C11H12O3, the ketone is rotated 49.1 (7)° from planarity with the aryl ring and the carboxyl group is rotated a further 31.2 (7)° from the ketone plane. The solid consists of chiral conformers of a single handedness, aggregating in hydrogen‐bonding chains whose units are related by a 31 screw axis, producing hydrogen‐bonding helices that extend in the c direction. The hydrogen bonding is of the acid‐to‐acid type [O?O = 2.709 (6) and H?O = 1.87 (5) Å] and does not formally involve the ketone; however, the ketone O atom in the acceptor mol­ecule has a close polar contact with the same donor carboxyl group [O?O = 3.005 (6) and H?O = 2.50 (5) Å]. This secondary hydrogen bond is probably a major factor in stabilizing the observed cisoid di­carbonyl conformation. Several intermolecular C—H?O close contacts were found for the latter compound.  相似文献   

6.
In the title compound, C29H30N6O, the naphthyridine moiety is planar with a dihedral angle between the fused rings of 1.9 (1)°. The phenol ring is nearly coplanar, while the diethyl­amino­phenyl substituent is orthogonal to the central naphthyridine ring and the pyrrolidine ring makes an angle of 11.2 (1)° with it. The O atom of the hydroxy substituent is coplanar with the phenyl ring to which it is attached. The molecular structure is stabilized by a C—H?N‐type intramolecular hydrogen bond and the packing is stabilized by intermolecular C—H?π, O—H?N and N—H?O hydrogen bonds.  相似文献   

7.
The title compound, C24H19N3O, crystallizes in the centrosymmetric space group P21/a with one mol­ecule in the asymmetric unit. The tetra­hydro­pyridine ring has a boat conformation. The dihedral angle between the fused pyridine rings is 16.2 (1)°. The equatorial and axial orientations of the two phenyl groups with respect to the tetra­hydro­pyridine ring are confirmed. The nitroso group is coplanar with the attached C—N—C group. The interplanar angle formed between the fused tetra­hydro­pyridine and benzene planes is 13.4 (1)°. The crystal packing is stabilized by an intermolecular C—H⃛O hydrogen bond, which forms a C(9) graph‐set chain running along the [001] direction.  相似文献   

8.
The mol­ecule of the title compound, C19H20O2S, corresponds to a chiral sulfinyldienol with two stereogenic centres, viz. the C atom susbtituted by the hydr­oxy group and the sulfinyl S atom. The mol­ecule displays a V‐shape in the solid state. The dihedral angle defined by the least‐squares planes of the aromatic rings is 72.9 (1)°. The packing pattern exhibits the following inter­molecular hydrogen bonds: one O—H⋯O [H⋯O = 1.98 Å, O⋯O = 2.785 (4) Å and O—H⋯O = 166°] and two C—H⋯O [H⋯O = 2.58 and 2.60 Å, C⋯O = 3.527 (5) and 3.347 (5) Å, and C—H⋯O = 164 and 134°]. These define a chain along b.  相似文献   

9.
In the title compound, C23H20N2O2S, the central thieno­pyridine ring system is essentially planar, the dihedral angle between the planes of the two rings being 0.3 (2)°. The terminal ethyl carboxyl­ate group is twisted by 26.7 (3)° away from the central ring system. A short intramolecular hydrogen bond involving the amino N atom and the carbonyl O atom [N⋯O = 2.806 (4) Å] forms a pseudo‐six‐membered ring. Significant intermolecular C—H⋯N, C—H⋯O and C—H⋯π interactions contribute strongly to the stability of the structure, along with weak π–π‐stacking interactions.  相似文献   

10.
The structure of the title compound, C20H18O2, consists of a dimeric arrangement of benzo­furan mol­ecules around an inversion centre, linked via C—H⋯O hydrogen bonds. There are also C—H⋯π ring interactions. All these interactions result in the formation of infinite chains parallel to the [100] axis. The cyclo­butane ring is puckered, with a dihedral angle of 29.03 (13)° between the two three‐atom planes.  相似文献   

11.
Methyl β‐d ‐galactopyranosyl‐(1→4)‐β‐d ‐xylopyranoside, C12H22O10, (II), crystallizes as colorless needles from water with positional disorder in the xylopyranosyl (Xyl) ring and no water molecules in the unit cell. The internal glycosidic linkage conformation in (II) is characterized by a ϕ′ torsion angle (C2′Gal—C1′Gal—O1′Gal—C4Xyl) of 156.4 (5)° and a ψ′ torsion angle (C1′Gal—O1′Gal—C4Xyl—C3Xyl) of 94.0 (11)°, where the ring atom numbering conforms to the convention in which C1 denotes the anomeric C atom, and C5 and C6 denote the hydroxymethyl (–CH2OH) C atoms in the β‐Xyl and β‐Gal residues, respectively. By comparison, the internal linkage conformation in the crystal structure of the structurally related disaccharide, methyl β‐lactoside [methyl β‐d ‐galactopyranosyl‐(1→4)‐β‐d ‐glucopyranoside], (III) [Stenutz, Shang & Serianni (1999). Acta Cryst. C 55 , 1719–1721], is characterized by ϕ′ = 153.8 (2)° and ψ′ = 78.4 (2)°. A comparison of β‐(1→4)‐linked disaccharides shows considerable variability in both ϕ′ and ψ′, with the range in the latter (∼38°) greater than that in the former (∼28°). Inter‐residue hydrogen bonding is observed between atoms O3Xyl and O5′Gal in the crystal structure of (II), analogous to the inter‐residue hydrogen bond detected between atoms O3Glc and O5′Gal in (III). The exocyclic hydroxymethyl conformations in the Gal residues of (II) and (III) are identical (gauche–trans conformer).  相似文献   

12.
Crystal structure analysis of the title compound, C13H12ClNO, reveals three crystallographically independent mol­ecules in the asymmetric unit. The main conformational difference between these mol­ecules is the orientation of the phenyl rings with respect to the pyrrole rings. The coplanar arrangement of the aldehyde groups attached to the pyrrole rings influences the pyrrole‐ring geometry. The C2—C3 and N1—C5 bonds are noticeably longer than the C4—C5 and N1—C2 bonds. Two independent mol­ecules of the title compound form dimers via intermolecular C—H⃛O hydrogen bonds [DA = 3.400 (3) Å and D—H⃛A = 157°]. The perpendicular orientation of the phenyl and pyrrole rings of one independent mol­ecule and its symmetry‐related mol­ecule allows C—H⃛π interactions, with an H⃛centroid distance of 2.85 Å and a C—H⃛π angle of 155°. The distances between the H atom and the pyrrole‐ring atoms indicate that the C—H bond points towards one of the bonds in the pyrrole ring.  相似文献   

13.
Methyl α‐lactoside, C13H24O11, (I), is described by glycosidic torsion angles ϕ (O5gal—C1gal—O1gal—C4glc) and ψ (C1gal—O1gal—C4glc—C5glc), which have values of −93.52 (13) and −144.83 (11)°, respectively, where the ring atom numbering conforms to the convention in which C1 is the anomeric C atom and C6 is the exocyclic hydroxy­methyl (–CH2OH) C atom in both residues. The linkage geometry is similar to that observed in methyl β‐lactoside methanol solvate, (II), in which ϕ is −88.4 (4)° and ψ is −161.3 (4)°. As in (II), an inter­molecular O3glc—H⋯O5gal hydrogen bond is observed in (I). The hydroxy­methyl group conformation in both residues is gauchetrans, with torsion angles ωgal (O5gal—C5gal—C6gal—O6gal) and ωglc (O5glc—C5glc—C6glc—O6glc) of 69.15 (13) and 72.55 (14)°, respectively. The latter torsion angle differs substantially from that found for (II) [−54.6 (2)°; gauchegauche]. Cocrystallization of methanol, which is hydrogen bonded to O6glc in the crystal structure of (II), presumably affects the hydroxy­methyl conformation in the Glc residue in (II).  相似文献   

14.
The title compound, C28H27N3O4S, crystallizes in the centrosymmetric space group P21/n, with one mol­ecule in the asymmetric unit. In the indole ring, the dihedral angle between the fused rings is 3.6 (1)°. The phenyl ring of the sulfonyl substituent makes a dihedral angle of 79.2 (1)° with the best plane of the indole moiety. The phenyl ring of the di­methyl­amino­phenyl group is orthogonal to the phenyl ring of the phenyl­sulfonyl group. The dihedral angle formed by the weighted least‐squares planes through the pyrrole ring and the phenyl ring of the di­methyl­amino­phenyl group is 7.8 (1)°. The molecular structure is stabilized by C—H?O and C—H?N interactions.  相似文献   

15.
The crystal structures of the title compounds, viz. C24H14F2N2O2, (I), and C25H17FN2O2, (II), respectively, have been determined in order to unravel the role of an ordered F atom in generating stable supra­molecular assemblies. On changing the substitution from fluorine to a methyl group, C—H⋯F inter­actions are replaced by C—H⋯π inter­actions, revealing the importance of such weak inter­actions when present alongside N—H⋯O and C—H⋯O hydrogen bonds. The dihedral angle between the planes of the 4‐fluoro­phenyl ring and the pyridine ring is 26.8 (1)° in (I), while that between the planes of the 4‐methyl­phenyl and pyridine rings is 29.5 (1)° in (II).  相似文献   

16.
The title compound, C27H27N5O3·H2O, is built up from pyrazolinone, phenyl and aceto­phenone oxime moieties. The 2‐­phenyl substituent is nearly perpendicular to the pyrazo­linone ring, with a dihedral angle of 87.66 (1)°. The aceto­phenone oxime moieties are twisted out of the pyrazolinone‐ring plane by 47.04 (1)°. The mol­ecules in the crystal pack in an antiparallel fashion and are held together by hydrogen‐bonded water mol­ecules and intermolecular O—H⋯O and O—H⋯N hydrogen bonds.  相似文献   

17.
The title compound, raloxifene hydro­chloride, C28H28NO4S+·Cl?, belongs to the benzo­thio­phene class of antiosteoporotic drugs. In the molecular cation, the 2‐phenol ring sustains a dihedral angle of 45.3 (1)° relative to the benzo­[b]­thio­phene system. The benzo­[b]­thio­phene and phenyl ring planes are twisted with respect to the carbonyl plane, with the smallest twist component occurring between the phenyl and carbonyl planes. The N atom bears the positive charge in the molecular cation and the piperidine ring adopts an almost perfect chair conformation. The Cl? anion is involved in the formation of N—H?Cl and O—H?Cl intermolecular hydrogen bonds, which lead to the formation of a layer of molecular cations.  相似文献   

18.
The palladium(II) centre in the title compound, [PdCl2(C21H18N2OS)], is coordinated to the pyridyl N atom and to the thia­zolidinone S atom of the 5‐benzyl‐3‐phenyl‐2‐(2‐pyridyl)­thia­zolidin‐4‐one ligand, resulting in a five‐membered chelate ring. Two cis‐chloro ligands complete the square‐planar coordination environment of the metal. Although the geometry at the Pd centre is essentially planar, the N—Pd—S bite angle of 85.20 (8)° causes deviations in the cis angles from the ideal value of 90°. Opposite enantiomers form one‐dimensional chains in the cell via a short S?O intermolecular interaction.  相似文献   

19.
The title compound, C13H24O11·4H2O, (I), crystallized from water, has an internal glycosidic linkage conformation having ϕ′ (O5Gal—C1Gal—O1Gal—C4All) = −96.40 (12)° and ψ′ (C1Gal—O1Gal—C4All—C5All) = −160.93 (10)°, where ring‐atom numbering conforms to the convention in which C1 denotes the anomeric C atom, C5 the ring atom bearing the exocyclic hydroxymethyl group, and C6 the exocyclic hydroxymethyl (CH2OH) C atom in the βGalp and βAllp residues. Internal linkage conformations in the crystal structures of the structurally related disaccharides methyl β‐lactoside [methyl β‐d ‐galactopyranosyl‐(1→4)‐β‐d ‐glucopyranoside] methanol solvate [Stenutz, Shang & Serianni (1999). Acta Cryst. C 55 , 1719–1721], (II), and methyl β‐cellobioside [methyl β‐d ‐glucopyranosyl‐(1→4)‐β‐d ‐glucopyranoside] methanol solvate [Ham & Williams (1970). Acta Cryst. B 26 , 1373–1383], (III), are characterized by ϕ′ = −88.4 (2)° and ψ′ = −161.3 (2)°, and ϕ′ = −91.1° and ψ′ = −160.7°, respectively. Inter‐residue hydrogen bonding is observed between O3Glc and O5Gal/Glc in the crystal structures of (II) and (III), suggesting a role in determining their preferred linkage conformations. An analogous inter‐residue hydrogen bond does not exist in (I) due to the axial orientation of O3All, yet its internal linkage conformation is very similar to those of (II) and (III).  相似文献   

20.
In the title compound, [Cd(C14H10NO3)2(H2O)2], which crystallizes with Z = 4 in the space group C2c, the Cd atom is located on a twofold rotation axis and coordinated by six O atoms from two water mol­ecules and two carboxylate groups of two planar 4‐(2‐hydroxy­benzyl­idene­amino)­benzoate lig­ands, with a dihedral angle of 85.6 (1)° between them. Strong O—H⋯O hydrogen bonding in the coordination sphere, together with π–π stacking inter­actions, assemble the mol­ecules into two‐dimensional layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号