首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structures of the title compounds, (S)‐1‐carboxy‐3‐(methyl­sulfanyl)­propanaminium chloride, C5H12NO2S+·Cl, and (S)‐1‐carboxy‐3‐(methyl­selanyl)­propanaminium chloride, C5H12NO2Se+·Cl, are isomorphous. The proton­ated l ‐methionine and l ‐seleno­methionine mol­ecules have almost identical conformations and create very similar contacts with the Cl anions in the crystal structures of both compounds. The amino acid cations and the Cl anions are linked viaN—H⋯Cl and O—H⋯Cl hydrogen bonds.  相似文献   

2.
Crystals of l ‐leucinium perchlorate, C6H14NO2+·ClO4, are built up from protonated l ‐leucinium cations and perchlorate anions. l ‐Leucinium cations related by a twofold screw axis are inter­connected by N—H⋯O hydrogen bonds into zigzag chains parallel to [010]. The O atoms of the perchlorate anions act as acceptors of hydrogen bonds that link the l ‐leucinium chains into separated but inter­acting two‐dimensional layers parallel to (001). Since the title compound crystallizes in a non‐centrosymmetric space group, it can be useful as a material for non‐linear optics. The efficiency of second harmonic generation is about twice that of K2[HPO4].  相似文献   

3.
In the structure of l ‐prolinium picrate, C5H10NO2+·C6H2N3O7, the Cγ atom of the pyrrolidine ring has conformational disorder. Both the major and minor conformers of the pyrrolidine ring adopt conformations inter­mediate between a half‐chair and an envelope. Both the cation and anion are packed through chelated three‐centred N—H⋯O hydrogen bonds. The prolinium cation connects two different picrate anions, leading to an infinite chain running along the b axis. In 2‐methyl­pyridinium picrate, C6H8N+·C6H2N3O7, the cations and anions are packed separately along the a axis and are inter­connected by N—H⋯O hydrogen bonds. Intra­molecular contacts between phenolate O atoms and adjacent nitro groups are identified in both structures. A graph‐set motif of R12(6) is observed in both structures.  相似文献   

4.
The crystal structure of a protected l ‐tyrosine, namely N‐acetyl‐l ‐tyrosine methyl ester monohydrate, C12H15NO4·H2O, was determined at both 293 (2) and 123 (2) K. The structure exhibits a network of O—H...O and N—H...O hydrogen bonds, in which the water molecule plays a crucial role as an acceptor of one and a donor of two hydrogen bonds. Molecules of water and of the protected l ‐tyrosine form hydrogen‐bonded layers perpendicular to [001]. C—H...π interactions are observed in the hydrophobic regions of the structure. The structure is similar to that of N‐acetyl‐l ‐tyrosine ethyl ester monohydrate [Soriano‐García (1993). Acta Cryst. C 49 , 96–97].  相似文献   

5.
In both the title structures, O‐ethyl N‐(2,3,4,6‐tetra‐O‐acetyl‐β‐d ‐gluco­pyran­osyl)­thio­carbam­ate, C17H25NO10S, and O‐methyl N‐(2,3,4,6‐tetra‐O‐acetyl‐β‐d ‐gluco­pyran­osyl)­thiocar­bam­ate, C16H23NO10S, the hexo­pyran­osyl ring adopts the 4C1 conformation. All the ring substituents are in equatorial positions. The acetoxy­methyl group is in a gauchegauche conformation. The S atom is in a synperi­planar conformation, while the C—N—C—O linkage is antiperiplanar. N—H?O intermolecular hydrogen bonds link the mol­ecules into infinite chains and these are connected by C—H?O interactions.  相似文献   

6.
Cations and anions of the title compound {systematic name: 1‐[4‐(amino­carbonyl)butyl]guanidinium bis­(hydrogen­squarate)}, C6H17N5O2+·2C4HO4, are connected into a three‐dimensional network by inter­molecular N—H⋯O hydrogen bonds between the l ‐argininamidium ammonium, amide and guanidinium functions and the hydrogensquarate carbonyl O atoms. The independent hydrogensquarate monoanions are linked into dimers by pairs of O—H⋯O′ hydrogen bonds.  相似文献   

7.
Five two‐component molecular crystals, benzimidazolium 3‐nitro­benzoate, C7H7N2+·C7H4NO4?, (I), benzimidazolium 4‐nitro­benzoate, C7H7N2+·C7H4NO4?, (II), 1H‐benzotriazole–3‐nitro­benzoic acid (1/1), C6H5N3·C7H5NO4, (III), imidazol­ium 3‐nitro­benzoate, C3H5N2+·C7H4NO4?, (IV), and imid­azolium 4‐nitro­benzoate, C3H5N2+·C7H4NO4?, (V), were prepared with the aim of making chiral crystals. Only (I) crystallizes in a chiral space group. The mol­ecules of (I) and (II) are linked by hydrogen bonds to form 21 spiral chains. In (III), (IV) and (V), macrocyclic structures are formed from two acid and two base components, by an alternate arrangement of the acid and base moieties.  相似文献   

8.
The crystal structure of N‐(l ‐2‐amino­butyryl)‐l ‐alanine, C7H14N2O3, is closely related to the structure of l ‐alanyl‐l ‐alanine, both being tetragonal, while the retro‐analogue 2‐(l ‐alanyl­amino)‐l ‐butyric acid 0.33‐hydrate, C7H14N2O3·­0.33H2O, forms a new type of molecular columnar structure with three peptide mol­ecules in the asymmetric unit.  相似文献   

9.
The title compound, C16H36N+·C6H7O3?, crystallizes with two independent anions and two independent cations in the asymmetric unit. Each anion adopts an strans conformation and forms O?H—C hydrogen bonds to the α‐methyl­ene groups of four neighbouring tetra­butyl­ammonium cations, to create a three‐dimensional hydrogen‐bonded network.  相似文献   

10.
The structures of two compounds of l ‐tartaric acid with quinoline, viz. the proton‐transfer compound quinolinium hydrogen (2R,3R)‐tartrate monohydrate, C9H8N+·C4H5O6·H2O, (I), and the anhydrous non‐proton‐transfer adduct with quinaldic acid, bis­(quinolinium‐2‐carboxyl­ate) (2R,3R)‐tar­taric acid, 2C10H7NO2·C4H6O6, (II), have been determined at 130 K. Compound (I) has a three‐dimensional honeycomb substructure formed from head‐to‐tail hydrogen‐bonded hydrogen tartrate anions and water mol­ecules. The stacks of π‐bonded quinolinium cations are accommodated within the channels and are hydrogen bonded to it peripherally. Compound (II) has a two‐dimensional network structure based on pseudo‐centrosymmetric head‐to‐tail hydrogen‐bonded cyclic dimers comprising zwitterionic quinaldic acid species which are inter­linked by tartaric acid mol­ecules.  相似文献   

11.
The title compound, C3H7NO2·C3H8NO2+·NO3?, contains l ‐alanine–alaninium dimers bonded via the carboxyl groups by a strong asymmetric hydrogen bond with an O?O distance of 2.4547 (19) Å. The neutral alanine mol­ecule exists as a zwitterion, where the carboxyl group is dissociated and the amino group is protonated. The alaninium cation has both groups in their acidic form. The alanine mol­ecule and the alaninium cation differ only slightly in their conformation, having an N—Cα—C=O torsion angle close to ?25°. The dimers and the nitrate anion are joined through a three‐dimensional hydrogen‐bond network, in which the full hydrogen‐bonding capabilities of the amino groups of the two alanine moieties are realised.  相似文献   

12.
The title compounds are diastereoisomers with antipodean axial chirality. The M isomer crystallizes as a (1/3) acetone solvate, C32H30NO+·Br?·3C3H6O, while the P isomer crystallizes as a (1/1) di­chloro­methane solvate, C32H30NO+·Br?·CH2Cl2. In each structure, O—H?Br hydrogen bonds link the cations and anions to give ion pairs. The seven‐membered azepinium ring adopts the usual twisted‐boat conformation and its ring strain causes a slight curvature of the plane of each naphthyl ring.  相似文献   

13.
In the title 1/2/2 adduct, C4H12N22+·2C6H3N2O5?·2H2O, the dication lies on a crystallographic inversion centre and the asymmetric unit also has one anion and one water mol­ecule in general positions. The 2,4‐di­nitro­phenolate anions and the water mol­ecules are linked by two O—H?O and two C—H?O hydrogen bonds to form molecular ribbons, which extend along the b direction. The piperazine dication acts as a donor for bifurcated N—H?O hydrogen bonds with the phenolate O atom and with the O atom of the o‐nitro group. Six symmetry‐related molecular ribbons are linked to a piperazine dication by N—H?O and C—H?O hydrogen bonds.  相似文献   

14.
The structures of two brucinium (2,3‐dimeth­oxy‐10‐oxostrychnidinium) salts of the α‐hydr­oxy acids l ‐malic acid and l ‐tartaric acid, namely brucinium hydrogen (S)‐malate penta­hydrate, C23H27N2O4+·C4H5O5·5H2O, (I), and anhydrous brucinium hydrogen (2R,3R)‐tartrate, C23H27N2O4+·C4H5O6,(II), have been determined at 130 K. Compound (I) has two brucinium cations, two hydrogen malate anions and ten water mol­ecules of solvation in the asymmetric unit, and forms an extensively hydrogen‐bonded three‐dimensional framework structure. In compound (II), the brucinium cations form the common undulating brucine sheet substructures, which accommodate parallel chains of head‐to‐tail hydrogen‐bonded tartrate anion species in the inter­stitial cavities.  相似文献   

15.
In the title ternary complex, C10H9N2+·C7H3N2O6?·C7H4N2O6, the pyridinium cation adopts the role of the donor in an intermolecular N—H?O hydrogen‐bonding interaction with the carboxyl­ate group of the 3,5‐di­nitro­benzoate anion. The mol­ecules of the ternary complex form molecular ribbons perpendicular to the b direction, which are stabilized by one N—H?O, one O—H?O and five C—H?O intermolecular hydrogen bonds. The ribbons are further interconnected by three intermolecular C—H?O hydrogen bonds into a three‐dimensional network.  相似文献   

16.
The title salt, C3H8NO2+·C2HO4, formed between l ‐cysteine and oxalic acid, was studied as part of a comparison of the structures and properties of pure amino acids and their cocrystals. The structure of the title salt is very different from that formed by oxalic acid and equivalent amounts of d ‐ and l ‐cysteine molecules. The asymmetric unit contains an l ‐cysteinium cation and a semioxalate anion. The oxalate anion is only singly deprotonated, in contrast with the double deprotonation in the crystal structure of bis(dl ‐cysteinium) oxalate. The oxalate anion is not planar. The conformation of the l ‐cysteinium cation differs from that of the neutral cysteine zwitterion in the monoclinic and orthorhombic polymorphs of l ‐cysteine, but is similar to that of the cysteinium cation in bis(dl ‐cysteinium) oxalate. The structure of the title salt can be described as a three‐dimensional framework formed by ions linked by strong O—H...O and N—H...O and weak S—H...O hydrogen bonds, with channels running along the crystallographic a axis containing the bulky –CH2SH side chains of the cysteinium cations. The cations are only linked through hydrogen bonds via semioxalate anions. There are no direct cation–cation interactions via N—H...O hydrogen bonds between the ammonium and carboxylate groups, or via weaker S—H...S or S—H...O hydrogen bonds.  相似文献   

17.
The asymmetric unit of the dl ‐lysine complex of adipic acid [bis­(dl ‐lysinium) adipate], 2C6H15N2O2+·C6H8O42−, contains a zwitterionic singly charged lysinium cation and half a doubly charged adipate anion (the complete anion has inversion symmetry). That of the l ‐lysine complex (lysinium hydrogen adipate), C6H15N2O2+·C6H9O4, consists of a lysinium cation and a singly charged hydrogen adipate anion. In both structures, the lysinium cations organize into layers inter­connected by adipate or hydrogen adipate anions. However, the arrangement of the mol­ecular ions in the layer is profoundly different in the dl ‐ and l ‐lysine complexes. The hydrogen adipate anions in the l ‐lysine complex form linear arrays in which adjacent ions are inter­connected by a symmetric O⋯H⋯O hydrogen bond.  相似文献   

18.
A new type of molecular arrangement for dipeptides is observed in the crystal structure of l ‐phenyl­alanyl‐l ‐alanine dihydrate, C12H16N2O3·2H2O. Two l ‐Phe and two l ‐Ala side chains aggregate into large hydro­phobic columns within a three‐dimensional hydrogen‐bond network.  相似文献   

19.
In the title compound, 2C5H6N5+·C8H4O42−·C8H6O4·1.45H2O, the asymmetric unit comprises two adeninium cations, two half phthalate anions with crystallographic C2 symmetry, one neutral phthalic acid mol­ecule, and one fully occupied and one partially occupied site (0.45) for water mol­ecules. The adeninium cations form N—H⋯O hydrogen bonds with the phthalate anions. The cations also form infinite one‐dimensional polymeric ribbons via N—H⋯N inter­actions. In the crystal packing, hydrogen‐bonded columns of cations, anions and phthalate anions extend parallel to the c axis. The water mol­ecules crosslink adjacent columns into hydrogen‐bonded layers.  相似文献   

20.
The crystal structure of the title melaminium salt, bis(2,4,6‐tri­amino‐1,3,5‐triazin‐1‐ium) dl ‐malate tetrahydrate, 2C3H7N6+·C4H4O52−·4H2O, consists of singly protonated melaminium residues, dl ‐malate dianions and water mol­ecules. The melaminium residues are connected into chains by four N—H⃛N hydrogen bonds, and these chains form a stacking structure along the c axis. The dl ‐malate dianions form hydrogen‐bonded chains and, together with hydrogen‐bonded water mol­ecules, form a layer parallel to the (100) plane. The conformation of the malate ion is compared with an ab initio molecular‐orbital calculation. The oppositely charged moieties, i.e. the stacks of melaminium chains and hydrogen‐bonded dl ‐malate anions and water mol­ecules, form a three‐dimensional polymeric structure, in which N—H⃛O hydrogen bonds stabilize the stacking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号