首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of (S)‐α,α‐di­phenyl­prolinol with an excess of borane–tetra­hydro­furan complex yields a stable crystalline material with the composition C34H38B2N2O2, which features a borane adduct of a spiro­cyclic structure with two ox­aza­borolidine rings joined by a central tetrahedral B atom. This dimeric ox­aza­borolidine complex, viz. 3,3,3′,3′‐tetra­phenyl‐1,1′‐spiro­bi(3a,4,5,6‐tetra­hydro‐3H‐pyrrolo­[1,2‐c][1,3,2]­ox­azaborole)–7‐borane, is the dominant product under various reaction conditions; its crystal structure is consistent with 11B, 1H and 13C NMR and IR analyses.  相似文献   

2.
3‐Aryl‐l‐menthopyrazoles 1 and 2 and related compounds were prepared from l‐menthone, and their enantioselective activities were discussed as chiral ligands. In this series of compounds, 2,6‐bis(2‐methyl‐l‐menthopyrazol‐3‐yl)pyridine ( 8a ), which had both structural features of 3‐phenyl‐l‐menthopyrazole ( 1b ) and C2 symmetric ligand in the molecule, should form the C2 symmetric complex in situ with Zn(OTf)2 or Ni(ClO4)2?6H2O. The subsequent complex catalyzed the Diels Alder reaction of 1‐acryloyl‐3,5‐dimethylpyrazole ( 11a ) with cyclopentadiene ( 12 ) enantioselectively up to 75 % ee.  相似文献   

3.
Usually, ortho lithiation of Kagan's template 1 and quenching with electrophiles leads highly diastereoselectively to planar‐chiral 1,2‐disubstituted ferrocenes. Surprisingly, lithiation of 1 with lithium diisopropylamide (LDA) followed by addition of paraformaldehyde afforded regioisomer (+)‐{[S(S)][4‐(2‐hydroxyethyl)phenyl]sulfinyl}ferrocene ( 2 ), which was converted to (+)‐{[S(S)]{4‐{2‐[(methylsulfonyl)oxy]ethyl}phenyl}sulfinyl}ferrocene ( 3 ) (Scheme 1). The desired diastereoisomer (l)‐1‐(hydroxymethyl)‐2‐(p‐tolylsulfinyl)ferrocene ( 5 ) in turn could also be obtained by ortho lithiation of 1 with LDA but by quenching with DMF to yield aldehyde 4 first, which then was reduced with NaBH4 to 5 . Finally, target compound (l)‐1‐[(dimethylamino)methyl]‐2‐(p‐tolylsulfinyl)ferrocene ( 6 ) was obtained by substitution of the OH group of 5 under mild conditions or directly by ortho lithiation of 1 with lithio‐2,4,6‐triisopropylbenzene (=2,4,6‐triisopropylphenyl)lithium; LTP) followed by quenching with N,N‐dimethylmethyleneiminium chloride. At low temperatures, reaction of 1 with LDA leads, via the preferred diastereoisomeric transition state ‘exo’‐ 7 and under extrusion of a (diisopropylamine)lithium complex of type 8 , in a highly selective manner, to diastereoisomeric ortho‐lithiated chelate (l)‐ 9 (Scheme 2). The reaction of 1 to 2 is explained by a rearrangement of (l)‐ 9 to {[S(S)] [4‐(lithiomethyl)phenyl]sulfinyl}ferrocene 10 , which is acid‐catalyzed by coordinated diisopropylamine in complexes of type 8 . This rearrangement is not observed if LTP is used as base or, in case LDA is applied, if the electrophile is sufficiently reactive at low temperatures.  相似文献   

4.
3,3′‐[2,2′‐Oxy‐bis‐(4S‐methyl, 5R‐phenyl‐1,3,2‐oxazaborolidine)]ethylene ( 4a ) and 3,3′‐[2, 2′‐oxy‐(4S‐methyl‐5R‐phenyl‐1,3,2‐oxazaborolidine)‐ (1,3,2‐benzoxazaborolidine)]ethylene ( 4b ) were synthesized by the reaction of N,N′‐bis‐[(1R,2S)‐norephedrine]oxalyl ( 3a ) or N,N′‐[((1R,2S)‐norephedrine, o‐hydroxyphenylamine]oxalyl ( 3b ) with BH3‐THF. The molecular structure of these compounds was established by NMR and infrared spectroscopy. The molecular geometry for 4 was studied by means of theoretical methods, resulting in structures that were in total agreement with those obtained by spectroscopy data and X‐ray diffraction. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:513–519, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20151  相似文献   

5.
The synthesis of α‐benzamido‐α‐benzyl lactones 23 of various ring size was achieved either via ‘direct amide cyclization’ by treatment of 2‐benzamido‐2‐benzyl‐ω‐hydroxy‐N,N‐dimethylalkanamides 21 in toluene at 90 – 110° with HCl gas or by ‘ring transformation’ of 4‐benzyl‐4‐(ω‐hydroxyalkyl)‐2‐phenyl‐1,3‐oxazol‐5(4H)‐ones under the same conditions. The precursors were obtained by C‐alkylations of 4‐benzyl‐2‐phenyl‐1,3‐oxazol‐5(4H)‐one ( 15 ) with THP‐ or TBDMS‐protected ω‐hydroxyalkyl iodides. Ring opening of the THP‐protected oxazolones by treatment with Me2NH followed by deprotection of the OH group gave the diamides 21 , whereas deprotection of the TBDMS series of oxazolones 25 with TBAF followed by treatment with HCl gas led to the corresponding lactones 23 in a one‐pot reaction.  相似文献   

6.
A series of new C2‐symmetric (1S,2S)‐cyclohexane‐1,2‐dicarboxamides was synthesized from (1S,2S)‐cyclohexane‐1,2‐dicarbonyl dichloride and N‐benzyl‐substituted aromatic amines, which were prepared from 2‐aminopyridine, 2‐chloroaniline, and 2‐aminophenol via imine formation with benzaldehyde and subsequent reduction with NaBH4. (1S,2S)‐N,N′‐Dibenzyl‐N,N′‐bis[2‐(benzyloxy)phenyl]cyclohexane‐1,2‐dicarboxamide was converted to (1S,2S)‐N,N′‐dibenzyl‐N,N′‐bis(2‐hydroxyphenyl)cyclohexane‐1,2‐dicarboxamide via hydrogenolysis in the presence of Pd(OH)2 on active carbon powder.  相似文献   

7.
The 1H‐pyrazole‐3‐carboxylic acid 1 was converted via reactions of its acid chloride 3 with various asymmetrical disubstituted urea and alcohol derivatives into the corresponding novel 4‐benzoyl‐N‐(N′,N′‐dialkylcarbamyl)‐1‐(4‐methoxyphenyl)‐5‐phenyl‐1H‐pyrazole‐3‐carboxamide 4a , b and alkyl 4‐benzoyl‐1‐(4‐methoxyphenyl)‐5‐phenyl‐1H‐pyrazole‐3‐carboxylate 7a‐c , respectively, in good yields (57%‐78%). Friedel‐Crafts reactions of 3 with aromatic compouns for 15 min.‐2 h led to the formation of the 4‐3‐diaroyl‐1‐(4‐hydroxyphenyl)‐5‐phenyl‐1H‐pyrazoles 9a‐c , 4‐benzoyl‐1‐(4‐methoxyphenyl)‐3‐aroyl‐5‐phenyl‐1H‐pyrazoles 10a , b and than from the acylation reactions of 9a‐c were obtained the 3,4‐diaroyl‐1‐(4‐acyloxyphenyl)‐5‐phenyl‐1H‐pyrazoles 13a‐d . The structures of all new synthesized compounds were established by NMR experiments such as 1H, and 13C, as well as 2D COSY and IR spectroscopic data, and elemental analyses. All the compounds were evaluated for their antimicrobial activities (agar diffusion method) against eight bacteria and two yeasts.  相似文献   

8.
A synthetic route to enantiomerically pure (1R,2S)‐1‐phenylphospholane‐2‐carboxylic acid ( 1 ), which is a phosphorus analogue of proline, has been established. A key step is the deprotonation–carboxylation of the 1‐phenylphospholane borane complex 3 by using sBuLi/1,2‐dipiperidinoethane (DPE). Configurational stability of the key intermediate, the amine‐coordinated α‐phosphinoalkyllithium borane complex 4 , was investigated by employing lithiodestannylation–carboxylation of both diastereomers of the 1‐phenyl‐2‐trimethylstannylphospholane borane complex 7 in the presence of several kinds of amines, and as a result, 4 was found to be configurationally labile even at ?100 °C. The key intermediate, the DPE‐coordinated trans‐1‐phenyl‐2‐phospholanyllithium borane complex 9 , was isolated, and the structure was identified by X‐ray crystal structure analysis. This is the first X‐ray crystal structure determined for an α‐monophosphinoalkyllithium borane complex. Remarkably, the alkyllithium complex is monomeric and tricoordinate at the lithium center with a slightly pyramidalized environment, and the existence of a Li? C bond (2.170 Å) has been confirmed. Moreover, 1H–7Li HOESY and 6Li NMR analyses suggested the structure of 9 in solution as well as the existence of an equilibrium between 9 , its cis isomer, and the ion pair 8 at room temperature, which was extremely biased towards 9 at ?100 °C. Finally, 1 was used as a chiral ligand in a palladium‐catalyzed allylic substitution, and the desired product was obtained in high yield with good enantioselectivity.  相似文献   

9.
The absolute configuration of the title cis‐(1R,3R,4S)‐pyrrolidine–borane complex, C18H34BNO2Si, was confirmed. Together with the related trans isomers (3S,4S) and (3R,4R), it was obtained unexpectedly from the BH3·SMe2 reduction of the corresponding chiral (3R,4R)‐lactam precursor. The phenyl ring is disordered over two conformations in the ratio 0.65:0.35. The crystallographic packing is dominated by the rarely found donor–acceptor hydroxy–borane O—H...H—B hydrogen bonds.  相似文献   

10.
New chiral pyrazoles, (4R,7R)‐4‐methyl‐7‐isopropyl‐3‐phenyl‐ (3‐phenyliso menthopyrazole cis‐1), (4R,7S)‐4‐methyl‐7‐isopropyl‐ (1‐menthopyrazole; trans‐2), (4R,7R)‐4‐isopropyl‐7‐methyl‐ (iso carvomen‐thopyrazole, cis‐3) and (4R,7S)‐4‐isopropyl‐7‐methyl‐4,5,6,7‐tetrahydro‐1H‐indazole (carvomenthopyra‐zole, trans‐3) were prepared. The diastereomeric pairs of these 1–3 were structurally characterized by NMR spectroscopy. The subtle differences of structures of 1–3 should induce the useful effects for a chiral auxiliary or a chiral catalyst.  相似文献   

11.
Chloride abstraction from the half‐sandwich complexes [RuCl2(η6p‐cymene)(P*‐κP)] ( 2a : P* = (Sa,R,R)‐ 1a = (1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl bis[(1R)‐1‐phenylethyl)]phosphoramidite; 2b : P* = (Sa,R,R)‐ 1b = (1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl bis[(1R)‐(1‐(1‐naphthalen‐1‐yl)ethyl]phosphoramidite) with (Et3O)[PF6] or Tl[PF6] gives the cationic, 18‐electron complexes dichloro(η6p‐cymene){(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl {(1R)‐1‐[(1,2‐η)‐phenyl]ethyl}[(1R)‐1‐phenylethyl]phosphoramidite‐κP}ruthenium(II) hexafluorophosphate ( 3a ) and [Ru(S)]‐dichloro(η6p‐cymene){(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl {(1R)‐1‐[(1,2‐η)‐naphthalen‐1‐yl]ethyl}[(1R)‐1‐(naphthalen‐1‐yl)ethyl]phosphoramidite‐κP)ruthenium(II) hexafluorophosphate ( 3b ), which feature the η2‐coordination of one aryl substituent of the phosphoramidite ligand, as indicated by 1H‐, 13C‐, and 31P‐NMR spectroscopy and confirmed by an X‐ray study of 3b . Additionally, the dissociation of p‐cymene from 2a and 3a gives dichloro{(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl [(1R)‐(1‐(η6‐phenyl)ethyl][(1R)‐1‐phenylethyl]phosphoramidite‐κP)ruthenium(II) ( 4a ) and di‐μ‐chlorobis{(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl [(1R)‐1‐(η6‐phenyl)ethyl][(1R)‐1‐phenylethyl]phosphoramidite‐κP}diruthenium(II) bis(hexafluorophosphate) ( 5a ), respectively, in which one phenyl group of the N‐substituents is η6‐coordinated to the Ru‐center. Complexes 3a and 3b catalyze the asymmetric cyclopropanation of α‐methylstyrene with ethyl diazoacetate with up to 86 and 87% ee for the cis‐ and the trans‐isomers, respectively.  相似文献   

12.
In the title compounds, [N‐(phenyl{2‐[N‐(S)‐(2‐picolyl)­prolyl­amino]­phenyl}methyl­ene)‐(S)‐phenyl­alaninato]­nickel(II), [Ni(C33H30N4O3)], (I), [N‐(phenyl{2‐[N‐(S)‐(3‐picolyl)­prolyl­amino]­phenyl}methyl­ene)‐(S)‐phenyl­alaninato]­nickel(II) hemihydrate, [Ni(C33H30N4O3)]·0.5H2O, (II), and [N‐({2‐[N‐(S)‐ethyl­prolyl­amino]­phenyl}phenyl­methyl­ene)‐(S)‐phenyl­ala­nin­ato]­nickel(II), [Ni(C29H29N3O3)], (III), the NiII centres have approximate square‐planar coordination geometries from N3O donor sets. The picolyl N atoms in (I) and (II) are too remote from the metal centres to interact significantly, but the metal coordination geometries experience tetrahedral distortion and/or displacement of the metal centre from the N3O plane. These are linked to conformational differences between the ligands of the symmetry‐independent complexes (Z′ = 2), which in turn are related to molecular packing. In (III), where a less sterically demanding ethyl group replaces the picolyl substituents, there are none of the distortions or displacements seen in (I) and (II).  相似文献   

13.
N‐Hydroxyalkyl‐1‐menthopyrazoles acted as a chiral catalyst for the diethylzinc ( 1 ) addition to aromatic aldehydes, and 1‐aryl‐1‐propanols were afforded enantioselectively. These reactions were carried out optimally in toluene at 40 °C in the presence of 30 mol% of (2′S)‐2‐(2‐phenyl‐2‐hydroxyethyl)‐3‐phenyl‐1‐men‐thopyrazole ((S)‐ 16d ) to afford optically active 1‐aryl‐1‐propanols up to 70% ee (S).  相似文献   

14.
2‐Chloro‐4‐phenyl‐2a‐(4′‐methoxyphenyl)‐3,5‐dihydroazatetracyclic [1,2‐d]benzo [ 1,4]diazepin‐1 ‐one ( III a) and 2‐chloro‐4‐methyl‐2a‐(4′‐methoxyphenyl)‐3,5‐dihydroazatetracyclic[1,2‐d]‐benzo[1,4]diazepin‐1‐one ( III b) were synthesized. 1‐Benzoyl‐2‐phenyl‐4‐(4′‐methoxyphenyl)[1,4]‐benzodiazepine ( II a) was formed through benzoylation of starting material 2‐phenyl‐4‐(4′‐methoxyphenyl)‐[1,4]benzodiazepine ( I a) with the inversion of seven‐member ring boat conformation. The thus formed β‐lactams should have four pairs of stereoisomers. However, only one pair of enantiomers (2S,2R,4R) and (2R,2aS,4S) was obtained. The mechanism and stereochemistry of the formation of these compounds were studied on the basis of nmr spectroscopy and further confirmed by X‐ray diffraction.  相似文献   

15.
1,3,5‐Trisubstituted pyrazolines to pyrazoles are carried out efficiently in the presence of new reagents N,N,N′, N′‐tetrabromo‐benzene‐1,3‐disulfonylamine [TBBDA] and N,N′‐dibromo‐N,N′‐1,2‐ethanediylbis‐(p‐toluenesulphonamide) [BNBTS] in solvent‐free conditions with catalytic amounts of SiO2 under microwave irradiation in high yields.  相似文献   

16.
A simple reaction affording (E)‐1‐dimethylamino‐2‐phenylsulfonylethylene, and S‐((E)‐2‐(N',N'‐dimethylamino)ethenyl)‐S‐phenyl‐N‐(p‐tolylsulfonyl) sulfoximide in high yields is described. A reversal in regioselectivity was observed when the β‐dimethylaminovinyl sulfone was employed as a dipolarophile in cycloadditions with nitrile oxides. The sulfone gives rise mainly to 4‐substituted isoxazoles, after elimination of dimethyl amine. In comparison, phenyl vinyl sulfone cycloadds to give 5‐substituted isoxazolines. Although not showing comparable dipolarophilic activity in reactions with nitrile oxides and nitrile imides, the β‐dimethylaminovinyl sulfoximide was easily converted to S‐((E)‐(3‐ethoxycarbonyl)prop‐2‐enyl)‐S‐phenyl‐N‐(p‐tolylsulfonyl) sulfoximide. This allylic sulfoximide cycloadds in good yield to both benzonitrile oxide and diphenylnitrile imide, but no stereoselectivity was observed in the process; and only modest regioselectivity was detected in the case of benzonitrile oxide.  相似文献   

17.
It was found that the reaction of dimethyl H‐phosphonate ( 1 ) with 2‐hydroxyalkyl‐N‐2′‐hydroxyalkyl carbamates at 135°C includes several chemical reaction steps: (i) chemical transformations of 1‐methyl‐2‐hydroxyethyl‐N‐2′‐hydroxyethyl carbamate ( 2 ) and 2‐methyl‐2‐hydroxyethyl‐N‐2′‐hydroxyethyl carbamate ( 3 ); (ii) transesterification of dimethyl H‐phosphonate with 2 and 3 , and with secondary hydroxyl‐containing compounds that are formed during the course of the chemical transformation of 2‐hydroxyalkyl‐N‐2′‐hydroxyalkyl carbamates; (iii) hydrolysis of 1 and dialkyl H‐phosphonates, formed via transesterification of 1 with secondary hydroxyl‐containing compounds. The interaction was studied by means of 1H, 13C, 31P NMR, and FAB mass spectroscopy. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:119–124, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20404  相似文献   

18.
The title compounds, rac‐(1′R,2R)‐tert‐butyl 2‐(1′‐hydroxyethyl)‐3‐(2‐nitrophenyl)‐5‐oxo‐2,5‐dihydro‐1H‐pyrrole‐1‐carboxylate, C17H20N2O6, (I), rac‐(1′S,2R)‐tert‐butyl 2‐[1′‐hydroxy‐3′‐(methoxycarbonyl)propyl]‐3‐(2‐nitrophenyl)‐5‐oxo‐2,5‐dihydro‐1H‐pyrrole‐1‐carboxylate, C20H24N2O8, (II), and rac‐(1′S,2R)‐tert‐butyl 2‐(4′‐bromo‐1′‐hydroxybutyl)‐5‐oxo‐2,5‐dihydro‐1H‐pyrrole‐1‐carboxylate, C13H20BrNO4, (III), are 5‐hydroxyalkyl derivatives of tert‐butyl 2‐oxo‐2,5‐dihydropyrrole‐1‐carboxylate. In all three compounds, the tert‐butoxycarbonyl (Boc) unit is orientated in the same manner with respect to the mean plane through the 2‐oxo‐2,5‐dihydro‐1H‐pyrrole ring. The hydroxyl substituent at one of the newly created chiral centres, which have relative R,R stereochemistry, is trans with respect to the oxo group of the pyrrole ring in (I), synthesized using acetaldehyde. When a larger aldehyde was used, as in compounds (II) and (III), the hydroxyl substituent was found to be cis with respect to the oxo group of the pyrrole ring. Here, the relative stereochemistry of the newly created chiral centres is R,S. In compound (I), O—H...O hydrogen bonding leads to an interesting hexagonal arrangement of symmetry‐related molecules. In (II) and (III), the hydroxyl groups are involved in bifurcated O—H...O hydrogen bonds, and centrosymmetric hydrogen‐bonded dimers are formed. The Mukaiyama crossed‐aldol‐type reaction was successful when using the 2‐nitrophenyl‐substituted hydroxypyrrole, or the unsubstituted hydroxypyrrole, and boron trifluoride diethyl ether as catalyst. The synthetic procedure leads to a syn configuration of the two newly created chiral centres in all three compounds.  相似文献   

19.
Described herein is an unprecedented access to BN‐polyaromatic compounds from 1,1′‐biphenylamines by sequential borane‐mediated C(sp2)?H borylation and intramolecular N‐demethylation. The conveniently in situ generated Piers’ borane from a borinic acid reacts with a series of N,N‐dimethyl‐1,1′‐biphenyl‐2‐amines in the presence of PhSiH3 to afford six‐membered amine‐borane adducts bearing a C(sp2)?B bond at the C2′‐position. These species undergo an intramolecular N‐demethylation with a B(C6F5)3 catalyst to provide BN‐isosteres of polyaromatics. According to computational studies, a stepwise ionic pathway is suggested. Photophysical characters of the resultant BN‐heteroarenes shown them to be distinctive from those of all‐carbon analogues.  相似文献   

20.
The title diastereoisomers, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate and methyl 5‐(S)‐[2‐(R)‐methoxycarbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxylate, both C19H23N3O5, have been studied in two crystalline forms. The first form, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methylphenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate–methyl 5‐(S)‐[2‐(R)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methylphenyl)‐4,5‐dihydropyrazole‐3‐carboxylate (1/1), 2(S),5(S)‐C19H23N3O5·2(R),5(S)‐C19H23N3O5, contains both S,S and S,R isomers, while the second, methyl 5‐(S)‐[2‐(S)‐methoxycarbonyl)‐2,3,4,5‐tetrahydro­pyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate, 2(S),5(S)‐C19H23N3O5, is the pure S,S isomer. The S,S isomers in the two structures show very similar geometries, the maximum difference being about 15° on one torsion angle. The differences between the S,S and S,R isomers, apart from those due to the inversion of one chiral centre, are more remarkable, and are partially due to a possible rotational disorder of the 2‐­(methoxycarbonyl)tetrahydropyrrole group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号