共查询到20条相似文献,搜索用时 10 毫秒
1.
本文是作者1986年3月访问中国时的报告。文中介绍日本研究SERS(Surface enhan-ced Raman scatterjng)小组的最近成果。在实验方面,林(Hayashi)等人获得enhance--ment η接近SPP(surface plasmon ploariton)模型所予测的值;山田(Yamada)等人认为出现SERS现象中,化学吸附起着本质性的重要作用。理论方面,上羽(Ueba)等人应用(曲豆)(冫尺)(Toyozawa)等人的理论计算了:(1)允许少量电荷在表面连续能级和吸附分子激发状态之间转移的物理吸附系统共振;(2)电荷转移(CT)给Raman散射光强度及其光谱带来的影响。 相似文献
2.
3.
4.
5.
本文通过改进实验方法,将单壁碳纳米管的乙醇溶液与金胶混合并制作成固体薄膜,使单壁碳纳米管夹裹在金纳米粒子之间,保证了吸附的紧密性,获得了高质量的单壁碳纳米管SERS光谱。不但观测到文献中报道的径向呼吸振动模(RBM)和C-C正切拉伸模(GM)的增强,还在1100-1500cm-1区域观测到一组新峰,其峰形完整并有相当的强度。这些峰在现有的文献中几乎没有报导。文章对这组新峰的出现进行了初步的分析。 相似文献
6.
7.
8.
9.
目前所应用的SERS检测技术中,绝大部分都是贵金属材料,虽然贵金属材料都具有很强的拉曼增强效果,但是对激发光源却有很强的依赖,具有较大的局限性。以单层二维有序的聚苯乙烯胶体球为模板支撑,采用共溅射的方法将一种贵金属Ag与半导体FeS成功复合到一起并具有SERS活性的Ag/FeS复合材料。经检测发现其可以作为SERS基底,拓展了SERS基底材料的检测范围,增强了待检测探针分子亚甲基蓝(MB)的拉曼信号强度,在拉曼检测中有望得到广泛的应用。 相似文献
10.
11.
具有高灵敏度,高选择性特点的表面增强拉曼散射(SERS)与免疫学中的特异吸附机理相结合形成的SERS标记免疫检测技术具有很大的研究及应用价值。文章重点研究了关于SERS标记免疫检测的再生性问题,力求增加此技术的循环利用价值。实验采用甘氨酸-HCl生物缓冲体系对三明治结构(固相抗体-抗原-标记免疫金溶胶)进行洗脱,通过酸碱度的改变,促使抗体抗原复合物发生解离。实验结果表明,洗脱24 h后,固相抗体上连接的抗原及标记免疫溶胶能得到很好的去除,去除后再次组装三明治结构,仍能通过对标记分子的识别进行SERS标记免疫检测。在此基础上还研究了此方法的稳定性与重复使用次数,发现其具有较好的稳定性,重复使用次数可达10次左右。 相似文献
12.
13.
SERS技术研究电化学中的共吸附顾仁敖(苏州大学化学系苏州215006)SERSStudiesonElectrochemicalCoadsorptionGuRenao(DepartmentChemistry,SuzhouUniversitySuzho... 相似文献
14.
磷脂是生物膜的重要组成部分,研究磷脂与蛋白质的相互作用以及膜蛋白与其配体间的相互作用对于深入理解细胞内信号转导的机制具有重要意义。表面增强拉曼光谱(SERS)以其高灵敏和高选择特性在生命科学研究领域受到了越来越多的关注。本研究从磷脂相容性SERS活性材料出发,制备了Au@SiO2核壳纳米材料,并组装了1,2-二油酰基-甘油-3-磷酸胆碱(DOPC),通过SERS光谱成功获取了DOPC的结构信息,为研究磷脂-蛋白质相互作用提供了有效手段。 相似文献
15.
16.
本文着重从磁存储出发讨论了磁光存储,硬磁盘存储的现状和未来发展。沿用传统的驱动器,它们的面存储密度的极限大致在10Gbits/in2的量级,这主要是由存储材料性能和信息存取模式(磁头或光头)的限制。为要进一步提高存储密度,需采取类似近场光学、原子力、磁力和扫描隧道显微镜这样的现代手段来进行信息的存储,但要实现,需要一段较长的时间。在磁存储获得发展的同时,非磁的光存储介质的应用得到了开发,主要是CD-ROM(只读式),CDR(写一次)和PD(相变型)。正是磁和光存储介质在信息存储中的应用,使当今信息技术中一重要领域——信息存储显得生气勃勃。 相似文献
17.
本文报导了一类菁染料在银溶胶中和吸附在硝酸刻蚀的银和铜箔上的SERS 光谱以及两种方式的比较。对硝酸刻蚀粗化银和铜箔表面的最佳条件进行了讨论,区别于银溶胶,用粗化银和铜箔测得了共振 SERS 光谱。提出了菁染料分子在铜、银表面吸附的可能方式。 相似文献
18.
《光散射学报》2015,(2):139-143
本文用柠檬酸三钠还原硝酸银的方法制得银纳米粒子,并且通过调节加入正硅酸乙酯(TEOS)的量形成不同包裹厚度的Ag@SiO2。用紫外可见吸收光谱、扫描和透射电子显微镜测试手段对样品进行了分析和表征。获得了比较均匀的银纳米颗粒,加入TEOS后,在银纳米颗粒的周围包裹了一层二氧化硅膜,形成分散性较好的Ag@SiO2纳米颗粒。通过吡啶分子来探测不同SiO2厚度的Ag@SiO2的包裹致密性以及增强效果,选出增强效果最好的Ag@SiO2作为SERS基底,并把它运用于检测农药的残留问题。实验结果表明当加入1!L的TEOS时形成的Ag@SiO2纳米颗粒包裹得均匀致密并且拉曼增强效果很好。 相似文献
19.