首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 561 毫秒
1.
Oat (Avena sativa) is well known for its various health benefits. The protective effect of oat extract against oxidative stress-induced apoptosis in human keratinocytes HaCaT was determined. First, extracts of two varieties of oat, Daeyang and Choyang, were analyzed for fat-soluble antioxidants such as α-tocotrienol, γ-oryzanols, lutein and zeaxanthin using an UPLC system and for antioxidant activity using a DPPH assay. Specifically, an 80% ethanol extract of Daeyang oat (Avena sativa cv. Daeyang), which had high amounts of antioxidants and potent radical scavenging activity, was further evaluated for protective effect against oxidative stress-induced cell death, intracellular reactive oxygen species levels, the phosphorylation of DNA damage mediating genes such as H2AX, checkpoint kinase 1 and 2, and p53 and the activation of apoptotic genes such as cleaved caspase-3 and 7 and poly (ADP-ribose) polymerase in HaCaT cells. The Daeyang and Choyang oat 80% ethanol extracts had 26.9 and 24.1 mg/100 g γ-oryzanols, 7.69 and 8.38 mg/100 g α-tocotrienol, 1.25 and 0.34 mg/100 g of lutein and 1.20 and 0.17 mg/100 g of zeaxanthin, respectively. The oat 80% ethanol extract treatment (Avena sativa cv. Daeyang) had a protective effect on oxidative stress-induced cell death in HaCaT cells. In addition, the oat 80% ethanol extracts led to a significant decrease in the intracellular ROS level at a concentration of 50–200 μg/mL, the attenuation of DNA damage mediating genes and the inhibition of apoptotic caspase activities in a dose dependent manner (50–200 μg/mL). Thus, the current study indicates that an oat (Avena sativa cv. Daeyang) extract rich in antioxidants, such as polyphenols, avenanthramides, γ-oryzanols, tocotrienols and carotenoids, has a protective role against oxidative stress-induced keratinocyte injuries and that oat may a useful source for oxidative stress-associated skin damage.  相似文献   

2.
Oxidative stress has been considered as a major cause of cellular injuries in a variety of clinical abnormalities, especially prominent in neural diseases. One of the usable ways to prevent the reactive oxygen species (ROS)-mediated cellular injury is dietary or pharmaceutical augmentation of some free radical scavenger. Water-soluble amino-fullerene is a novel compound that behaves as a free radical scavenger with excellent biology consistent. In the present study, we have synthesized and characterized a novel cystine C60 derivative for the first time, and investigated the effects on hydrogen peroxide-induced oxidative stress and apoptotic death in cultured rat pheochromocytoma (PC12) cells. PC12 cells treated with hydrogen peroxide underwent apoptotic death as determined by MTT, PI/Hoechst 33342 staining and flow cytometry analysis. These results suggested that cystine C60 derivative has the potential to prevent oxidative stress-induced cell death and has no evident toxicity.  相似文献   

3.
4.
Pancreatic ??-cells are very sensitive to oxidative stress and this might play an important role in ??-cell death in diabetes. In the present study, we investigated whether the brown alga Ecklonia cava has protective effects against high glucose-induced damage in INS-1 pancreatic ??-cells. For that purpose, we prepared an enzymatic hydrolysate from E. cava (EHE) by using the carbohydrase, Celluclast. High-glucose (30?mM) treatment induced glucotoxicity, whereas EHE prevented cells from high glucose-induced damage then restoring cell viability was significantly increased. Furthermore, lipid peroxidation, intracellular reactive oxygen species (ROS) and nitric oxide (NO) were overproduced as the result of the treatment by high glucose; however, these lipid peroxidation, ROS and NO generations were effectively inhibited by addition of EHE in a dose-dependent manner. Moreover, EHE treatment increased activities of antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) in high glucose pretreated INS-1 pancreatic ??-cells. EHE slightly reduced the expression of pro-apoptotic protein Bax induced by high glucose but increased the expression of Bcl-2, an anti-apoptotic protein. These findings indicate that EHE might be used as potential nutraceutical agent which will protect the glucotoxicity caused by hyperglycemia-induced oxidative stress associated with diabetes.  相似文献   

5.
Type 1 diabetes (T1D) development, in part, is due to ER stress-induced β-cell apoptosis. Activation of the Ca2+-independent phospholipase A2 beta (iPLA2β) leads to the generation of pro-inflammatory eicosanoids, which contribute to β-cell death and T1D. ER stress induces iPLA2β-mediated generation of pro-apoptotic ceramides via neutral sphingomyelinase (NSMase). To gain a better understanding of the impact of iPLA2β on sphingolipids (SLs), we characterized their profile in β-cells undergoing ER stress. ESI/MS/MS analyses followed by ANOVA/Student’s t-test were used to assess differences in sphingolipids molecular species in Vector (V) control and iPLA2β-overexpressing (OE) INS-1 and Akita (AK, spontaneous model of ER stress) and WT-littermate (AK-WT) β-cells. As expected, iPLA2β induction was greater in the OE and AK cells in comparison with V and WT cells. We report here that ER stress led to elevations in pro-apoptotic and decreases in pro-survival sphingolipids and that the inactivation of iPLA2β restores the sphingolipid species toward those that promote cell survival. In view of our recent finding that the SL profile in macrophages—the initiators of autoimmune responses leading to T1D—is not significantly altered during T1D development, we posit that the iPLA2β-mediated shift in the β-cell sphingolipid profile is an important contributor to β-cell death associated with T1D.  相似文献   

6.
Poly (ADP-ribose) polymerase (PARP1) is a nuclear protein that, when overactivated by oxidative stress-induced DNA damage, ADP ribosylates target proteins leading to dramatic cellular ATP depletion. We have discovered a biologically active small-molecule inhibitor of PARP1. The discovered compound inhibited PARP1 enzymatic activity in vitro and prevented ATP loss and cell death in a surrogate model of oxidative stress in vivo. We also investigated a new use for PARP1 inhibitors in energy-deficient cells by using Huntington's disease as a model. Our results showed that insult with the oxidant hydrogen peroxide depleted cellular ATP in mutant cells below the threshold of viability. The protective role of PARP1 inhibitors against oxidative stress has been shown in this model system.  相似文献   

7.
The water extract of Gracilaria tenuistipitata have been found to be protective against oxidative stress-induced cellular DNA damage, but the biological function of the ethanolic extracts of G. tenuistipitata (EEGT) is still unknown. In this study, the effect of EEGT on oral squamous cell cancer (OSCC) Ca9-22 cell line was examined in terms of the cell proliferation and oxidative stress responses. The cell viability of EEGT-treated OSCC cells was significantly reduced in a dose-response manner (p < 0.0001). The annexin V intensity and pan-caspase activity of EEGT-treated OSCC cells were significantly increased in a dose-response manner (p < 0.05 to 0.0001). EEGT significantly increased the reactive oxygen species (ROS) level (p < 0.0001) and decreased the glutathione (GSH) level (p < 0.01) in a dose-response manner. The mitochondrial membrane potential (MMP) of EEGT-treated OSCC cells was significantly decreased in a dose-response manner (p < 0.005). In conclusion, we have demonstrated that EEGT induced the growth inhibition and apoptosis of OSCC cells, which was accompanied by ROS increase, GSH depletion, caspase activation, and mitochondrial depolarization. Therefore, EEGT may have potent antitumor effect against oral cancer cells.  相似文献   

8.
7β-(3-Ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (ECN), a sesquiterpenoid obtained from a natural source has proved to be effective in minimizing various side effects associated with opioids and nonsteroidal anti-inflammatory drugs. The current study focused on investigating the effects of ECN on neuropathic pain induced by partial sciatic nerve ligation (PSNL) by mainly focusing on oxidative stress, inflammatory and apoptotic proteins expression in mice. ECN (1 and 10 mg/kg, i.p.), was administered once daily for 11 days, starting from the third day after surgery. ECN post-treatment was found to reduce hyperalgesia and allodynia in a dose-dependent manner. ECN remarkably reversed the histopathological abnormalities associated with oxidative stress, apoptosis and inflammation. Furthermore, ECN prevented the suppression of antioxidants (glutathione, glutathione-S-transferase, catalase, superoxide dismutase, NF-E2-related factor-2 (Nrf2), hemeoxygenase-1 and NAD(P)H: quinone oxidoreductase) by PSNL. Moreover, pro-inflammatory cytokines (tumor necrotic factor-alpha, interleukin 1 beta, interleukin 6, cyclooxygenase-2 and inducible nitric oxide synthase) expression was reduced by ECN administration. Treatment with ECN was successful in reducing the caspase-3 level consistent with the observed modulation of pro-apoptotic proteins. Additionally, ECN showed a protective effect on the lipid content of myelin sheath as evident from FTIR spectroscopy which showed the shift of lipid component bands to higher values. Thus, the anti-neuropathic potential of ECN might be due to the inhibition of oxidative stress, inflammatory mediators and pro-apoptotic proteins.  相似文献   

9.
Plant bioactive extracts represent a major resource for identifying drugs and adjuvant therapy for type 2 diabetes. To promote early screening of plants’ antidiabetic potential, we designed a four in vitro tests strategy to anticipate in vivo bioactivity. Two antidiabetic plants were studied: Ocimum gratissimum L. (Oc) leaf extract and Musanga cecropoides R. Br. ex Tedlie (Mu) stem bark extract. Chemical compositions were analyzed by LCMS and HPLC. Antidiabetic properties were measured based on (1) INS-1 cells for insulin secretion, (2) L6 myoblast cells for insulin sensitization (Glut-4 translocation), (3) L6 myoblast cells for protection against hydrogen peroxide (H2O2) oxidative stress (cell mortality), and (4) liver microsomial fraction for glucose-6-phosphastase activity (G6P). Oc extract increased insulin secretion and insulin sensitivity, whereas it decreased oxidative stress-induced cell mortality and G6P activity. Mu extract decreased insulin secretion and had no effect on insulin sensitivity or G6P activity, but it increased oxidative stress-induced cell mortality. Results were compared with NCRAE, an antidiabetic plant extract used as reference, previously characterized and reported with increased insulin secretion and insulin sensitivity, protection against oxidative stress, and decreased G6P activity. The proposed set of four in vitro tests combined with chemical analysis provided insight into the interest in rapid early screening of plant extract antidiabetic potential to anticipate pharmaco-toxicological in vivo effects.  相似文献   

10.
An abrupt increase of intracellular Ca2+ is observed in cells under hypoxic or oxidatively stressed conditions. The dysregulated increase of cytosolic Ca2+ triggers apoptotic cell death through mitochondrial swelling and activation of Ca2+-dependent enzymes. Transglutaminase 2 (TG2) is a Ca2+-dependent enzyme that catalyzes transamidation reaction producing cross-linked and polyaminated proteins. TG2 activity is known to be involved in the apoptotic process. However, the pro-apoptotic role of TG2 is still controversial. In this study, we investigate the role of TG2 in apoptosis induced by Ca2+-overload. Overexpression of TG2 inhibited the A23187-induced apoptosis through suppression of caspase-3 and -9 activities, cytochrome c release into cytosol, and mitochondria membrane depolarization. Conversely, down-regulation of TG2 caused the increases of cell death, caspase-3 activity and cytochrome c in cytosol in response to Ca2+-overload. Western blot analysis of Bcl-2 family proteins showed that TG2 reduced the expression level of Bax protein. Moreover, overexpression of Bax abrogated the anti-apoptotic effect of TG2, indicating that TG2-mediated suppression of Bax is responsible for inhibiting cell death under Ca2+-overloaded conditions. Our findings revealed a novel anti-apoptotic pathway involving TG2, and suggested the induction of TG2 as a novel strategy for promoting cell survival in diseases such as ischemia and neurodegeneration.  相似文献   

11.
Numerous types of cells have been shown to undergo apoptosis when exposed to oxidant agent such as hydrogen peroxide. In order to understand the functional relationship between the anti- and pro-apoptotic regulatory proteins in the cells under oxidant stress, we have studied the level of expression of apoptosis regulatory proteins, bcl-2 and bax, in human leukemia HL-60 cells. The exposure of HL-60 cells to different concentrations of H2O2 for 6 h resulted in a typical apoptosis of the cells as characterized by flow cytometry, cell cycle analysis, and DNA fragmantation. There was a block in G1 to S transition and apoptotic cells were mainly derived from S and G2 cells. Kinetic study demonstrated that the levels of both bcl-2-mRNA and -protein expression were decreased with the progression of cellular apoptosis whereas the level of bax-mRNA was unchanged but the expressed bax-protein was not detectable. Cycloheximide, a nonspecific translation inhibitor, did not prevent the hydrogen peroxide-mediated apoptosis in HL-60 cells. These results suggest that the regulation of bcl-2, but not of bax are important factor in the oxidative stress-induced apoptosis in HL-60 cells.  相似文献   

12.
Rutin is a bioactive compound that possesses anti-tumor activities through triggering apoptosis. Triple-negative breast cancer (TNBC) is insensitive to targeted anti-tumoral drugs, and drug resistance in TNBC poses a challenge for a successful cure. The accumulation of misfolded proteins in the lumen of the endoplasmic reticulum (ER) results in cellular stress that initiates a specialized response designated as the unfolded protein response. This study aimed to find potential ER stress targets in triple-negative breast cancer. The viability of cells was evaluated using an MTT assay. Cell migration and proliferation were done by wound scratch and colony formation assay. Cell cycle detection, measurement of ER stress, mitochondrial membrane potential disruption, and cell death identification was performed using flow cytometry. The interaction of rutin with ER stress proteins is predicted using in silico docking. The pattern of gene expression was determined by qRT-PCR. The elevated rate of cell viability, cell cycle arrest, ER stress, MMP, and apoptotic induction was observed in combination treatment. Rutin exhibited the highest glide score with ASK1 and JNK. The results of qRT-PCR showed that rutin induced apoptosis through upregulation of ASK1 and JNK. The present study provides strong evidence supporting an important role of the ER stress response in mediating rutin-induced apoptosis in triple-negative breast cancer.  相似文献   

13.
Exposure of mammalian cells to oxidative stress alters lysosomal enzymes. Through cytochemical analysis of lysosomes with LysoTracker, we demonstrated that the number and fluorescent intensity of lysosome-like organelles in HeLa cells increased with exposure to hydrogen peroxide (H2O2), 6-hydroxydopamine (6-OHDA), and UVB irradiation. The lysosomes isolated from HeLa cells exposed to three oxidative stressors showed the enhanced antimicrobial activity against Escherichia coli. Further, when lysosomes that were isolated from HeLa cells exposed by oxidative stress were treated to normal HeLa cells, the viability of the HeLa cells was drastically reduced, suggesting increased in vitro lysosomal function (i.e., antimicrobial activity, apoptotic cell death). In addition, we also found that cathepsin B and D were implicated in increased in vitro lysosomal function when isolated from HeLa cells exposed by oxidative stress. Decrease in cathepsin B activity and increase in cathepsin D activity were observed in lysosomes isolated from HeLa cells after treatment with H2O2, 6-ODHA, or UVB, but cathepsin B and D were not the sole factors to induce cell death by in vitro lysosomal function. Therefore, these studies suggest a new approach to use lysosomes as antimicrobial agents and as new materials for treating cancer cell lines.  相似文献   

14.
Even though an increasing number of anticancer treatments have been discovered, the mortality rates of colorectal cancer (CRC) have still been high in the past few years. It has been discovered that melatonin has pro-apoptotic properties and counteracts inflammation, proliferation, angiogenesis, cell invasion, and cell migration. In previous studies, melatonin has been shown to have an anticancer effect in multiple tumors, including CRC, but the underlying mechanisms of melatonin action on CRC have not been fully explored. Thus, in this study, we investigated the role of autophagy pathways in CRC cells treated with melatonin. In vitro CRC cell models, HT-29, SW48, and Caco-2, were treated with melatonin. CRC cell death, oxidative stress, and autophagic vacuoles formation were induced by melatonin in a dose-dependent manner. Several autophagy pathways were examined, including the endoplasmic reticulum (ER) stress, 5′–adenosine monophosphate-activated protein kinase (AMPK), phosphoinositide 3-kinase (PI3K), serine/threonine-specific protein kinase (Akt), and mammalian target of rapamycin (mTOR) signaling pathways. Our results showed that melatonin significantly induced autophagy via the ER stress pathway in CRC cells. In conclusion, melatonin demonstrated a potential as an anticancer drug for CRC.  相似文献   

15.
Multidrug resistance (MDR) has posed a significant threat to cancer treatment and has led to the emergence of a new therapeutic regime of photodynamic therapy (PDT) to curb the menace. The PDT modality employs a photosensitiser (PS), excited at a specific wavelength of light to kill cancer cells. In the present study, we used a zinc phthalocyanine tetrasulfonic acid PS to mediate the photodynamic killing of MCF-7 cells overexpressed with P-glycoprotein (P-gp) and investigate the response to cell death induction. After photodynamic treatment, MCF-7 cells undergo cell death, and indicators like Annexin V/PI staining, DNA fragmentation, and measurement of apoptotic protein expression were investigated. Results showed increased externalisation of phosphatidylserine protein, measured as a percentage in flow cytometry indicative of apoptotic induction. This expression was significant (p < 0.006) for the untreated control cells, and there was no detection of DNA fragments after a laser fluence of 20 J/cm2. In addition, a statistically significant difference (p < 0.05) was seen in caspase 8 activity and Bax protein expression. These findings were indicative of apoptotic induction and thus seem to represent the extrinsic apoptotic pathway. This study shows the role of PDT in the treatment of a resistant phenotype breast cancer.  相似文献   

16.
Signaling pathways in cell death and survival after photodynamic therapy   总被引:9,自引:0,他引:9  
Photodynamic therapy (PDT) is a cytotoxic treatment, which can induce cells to initiate a rescue response, or to undergo cell death, either apoptosis or necrosis. The many signaling pathways involved in these processes are the topic of this review. The subcellular localization of the photosensitizer has been shown to be a key factor in the outcome of PDT. Mitochondrial localized photosensitizers are able to induce apoptosis very rapidly. Lysosomal localized photosensitizers can elicit either a necrotic or an apoptotic response. In the plasma membrane, a target for various photosensitizers, rescue responses, apoptosis and necrosis is initiated. Several protein phosphorylation cascades are involved in the regulation of the response to PDT. Finally, a number of stress-induced proteins play a role in the rescue response after PDT. Notably, the induction of apoptosis by PDT might not be crucial for an optimal outcome. Recent studies indicate that abrogation of the apoptotic pathway does alter the clonogenic survival of the cells after PDT. Further studies, both in vitro and especially in vivo could lead to more efficient combination therapies in which signaling pathways, involved in cell death or rescue, are either up- or downregulated before PDT.  相似文献   

17.
The tuberous rhizome Kaempferia rotunda Linn. has been used as food and traditional medicinal plant, and the purified K. rotunda lectin (KRL) showed antiproliferative activity against Ehrlich ascites carcinoma cells [1]. In the present study, KRL showed agglutination activity against Escherichia coli and Staphylococcus aureus, with partial inhibition of their growth. MTT assay was used to investigate the effect of KRL on EAC cells in vitro in RPMI-1640 medium, and it was found that lectin inhibited 6.2–50.5 % cell growth at the range of 7.5–120 μg/ml protein concentration. The cell cycle arrest at G0/G1 phase of EAC cells was also determined by flow cytometry after treatment with lectin. The apoptotic cell morphological changes of the treated EAC cells were confirmed by fluorescence and optical microscope. In the presence of caspase-3 inhibitor, the cell growth inhibition of the lectin was reduced significantly. RT-PCR was used to evaluate the expression of apoptosis-related genes, bcl-2, bcl-X, and bax. Bax gene expression was intensively increased with the despaired of bcl-X gene expression and significant decrease of bcl-2 gene expression in the cells treated with KRL. Thus, lectin induced apoptotic cell death in Ehrlich ascites carcinoma cells.  相似文献   

18.
Oxidative stress plays a crucial role in the development of airway diseases. Recently, hydrogen (H2) gas has been explored for its antioxidant properties. This study investigated the role of H2 gas in oxidative stress-induced alveolar and bronchial airway injury, where A549 and NCI-H292 cells were stimulated with hydrogen peroxide (H2O2) and lipopolysaccharide (LPS) in vitro. Results show that time-dependent administration of 2% H2 gas recovered the cells from oxidative stress. Various indicators including reactive oxygen species (ROS), nitric oxide (NO), antioxidant enzymes (catalase, glutathione peroxidase), intracellular calcium, and mitogen-activated protein kinase (MAPK) signaling pathway were examined to analyze the redox profile. The viability of A549 and NCI-H292 cells and the activity of antioxidant enzymes were reduced following induction by H2O2 and LPS but were later recovered using H2 gas. Additionally, the levels of oxidative stress markers, including ROS and NO, were elevated upon induction but were attenuated after treatment with H2 gas. Furthermore, H2 gas suppressed oxidative stress-induced MAPK activation and maintained calcium homeostasis. This study suggests that H2 gas can rescue airway epithelial cells from H2O2 and LPS-induced oxidative stress and may be a potential intervention for airway diseases.  相似文献   

19.
Polyrotaxane is a supramolecular assembly consisting of multiple cyclic molecules threaded by a linear polymer. One of the unique properties of polyrotaxane is molecular mobility, cyclic molecules moving along the linear polymer. Molecular mobility of polyrotaxane surfaces affects cell spreading, differentiation, and other cell-related aspects through changing subcellular localization of yes-associated proteins (YAPs). Subcellular YAP localization is also related to cell senescence derived from oxidative stress, which is known to cause cancer, diabetes, and heart disease. Herein, the effects of polyrotaxane surface molecular mobility on subcellular YAP localization and cell senescence following H2O2-induced oxidative stress are evaluated in human mesenchymal stem cells (HMSCs) cultured on polyrotaxane surfaces with different molecular mobilities. Oxidative stress promotes cytoplasmic YAP localization in HMSCs on high-mobility polyrotaxane surfaces; however, low-mobility polyrotaxane surfaces more effectively maintain nuclear YAP localization, exhibiting lower senescence-associated β-galactosidase activity and senescence-related gene expression and DNA damage than that seen with the high-mobility surfaces. These results suggest that the molecular mobility of polyrotaxane surfaces regulates subcellular YAP localization, thereby protecting HMSCs from oxidative stress-induced cell senescence. Applying the molecular mobility of polyrotaxane surfaces to implantable scaffolds can provide insights into the prevention and treatment of diseases caused by oxidative stress.  相似文献   

20.
Oxidative stress is the result of an imbalance in the redox state in a cell or a tissue. When the production of free radicals, which are physiologically essential for signaling, exceeds the antioxidant capability, pathological outcomes including oxidative damage to macromolecules, aberrant signaling, and inflammation can occur. Down syndrome (DS) and Williams-Beuren syndrome (WBS) are well-known and common genetic conditions with multi-systemic involvement. Their etiology is linked to oxidative stress with important causative genes, such as SOD-1 and NCF-1, respectively, of the diseases being primarily involved in the regulation of the redox state. Early aging, dementia, autoimmunity, and chronic inflammation are some of the main characteristics of these conditions that can be associated with oxidative stress. In recent decades, there has been a growing interest in the possible role of oxidative stress and inflammation in the pathology of these conditions. However, at present, few studies have investigated these correlations. We provide an overview of the current literature concerning the role of oxidative stress and oxidative damage in genetic syndromes with a focus on Down syndrome and WBS. We hope to provide new insights to improve the management of complications related to these diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号