首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The thermal dehydration of some rare earth metal formate dihydrates were studied by means of thermogravimetry, differential thermal analysis and differential scanning calorimetry.The dehydration took place successively as a one step reaction for all of the formate dihydrates examined. The reaction order of dehydration was found to be 23 for all of the salts examined, which indicated that the rate of dehydration was controlled by a chemical process at a phase boundary.The values of the activation energy, frequency factor and the enthalpy change of dehydration for all of the dihydrates were 108–142 kJ mole?1, 1016–1017 min?1 and 109–147 kJ mole?1, respectively.Both the temperature at which the dehydration occurred and the enthalpy change increased as the reciprocal of the radius of the metallic ion increased.  相似文献   

2.
The kinetics of thermal decomposition of mixed ligand complexes of Mn(II), Ni(II), Cu(II), Zn(II) and Cd(II) containing triethanolamine and oxalate have been studied using thermogravimetry (TG) and differential scanning calorimetry (DSC). The decomposition reaction in which the complexes lose one molecule of triethanolamine was found to be first order and the activation energy and pre-exponential factors were calculated using established techniques. The values of Ea obtained for these reactions using a modified form of the Horowitz and Metzger equation were 27.75, 20.54, 18.33, 25.32 and 23.25 kcal mole?1, respectively. Infrared spectral data of these complexes and the intermediates gave additional information about the coordinating nature of the ligands in these complexes.  相似文献   

3.
Non-isothermal kinetics of the thermal decomposition of mixed ligand complexes of cobalt(II), nickel(II), zinc(II) and cadmium(II) have been studied using thermogravimetry (TG) and differential scanning calorimetry (DSC). The reaction in which the complex loses one molecule of the ligand is found to be first order and the activation energy was calculated using established techniques. Using Dharwadkar and Karkhanavala's method, the values obtained were 25.65, 17.32, 25.22 and 20.95 kcal mole?1, respectively. Infrared spectral studies of these complexes and intermediates provided information regarding the coordinating nature of the ligand 1,3-diaminopropan-2-ol in these complexes.  相似文献   

4.
The thermal degradation of poly(3-pentylidene carboxylate) has been studied kinetically over the temperature range 200–300°C using thermogravimetry, gas evolution analysis, and rheogoniometry together with isolation and analysis of the reaction products. The observed behavior is completely different from that previously reported for poly(isopropylidene carboxylate) and poly(methylene carboxylate). Whereas in the latter cases the decomposition occurs by a first-order intramolecular ester interchange process characterized by an activation energy in the region of 27 kcal mole?1, poly(3-pentylidene carboxylate) decomposition occurs by random chain scission superimposed on a first-order hydrogen abstraction process. The activation energy associated with this decomposition reaction is in the region of 47 kcal mole?1, and the major degradation products are cis- and trans-2-ethyl crotonic acid.  相似文献   

5.
Cadmium thiourea reinickate undergoes two-stage thermal decomposition on heating. The DTG peak temperatures are 291 and 469°C and the corresponding DTA temperatures are 255 and 490°C. The kinetic parameters for the first stage decomposition are E* ≈ 120kJ mole?1; Z ≈ 1.2 × 108 cm3 mole?1 sec?1 and ΔS* ≈ ?95 J mole?1 K?1. For the second stage, E* ≈ 133 kJ mole?1; Z ≈ 6.1 × 105 cm?1 mole?1 sec?1 and ΔS* ≈ ?142 J mole?1 K?1.  相似文献   

6.
The sublimation enthalpy of bis(2,4-pentanedionato)beryllium(II) and of tris(2,4-pentanedionato)aluminium(III) has been determined by differential scanning calorimetry as 85.3 ± 3.5 kJ mole?1 and 125.6 ± 3.2 kJ mole?1, respectively. The corresponding fusion enthalpies are 15.67 ± 0.74 and 28.71 ± 1.34 kJ mole?1, respectively.  相似文献   

7.
The dehydration of ferric exchanged Y zeolites is studied by thermal analysis. Their DTA shows three endotherms in the temperature range 80–450°C. The order of reaction and apparent energies of activation are calculated using various equations. The order of dehydration is nearly one and the apparent energy of activation is 4–8 kcal mole?1. The effect of heating rate is studied. The energy of activation as determined by the Kissinger and Ozawa method is about 12 kcal mole?1, which is comparable with the heat of adsorption of water determined by the gravimetric method, and is more acceptable.  相似文献   

8.
Thermal reactions of the nickel(II) complexes, [Ni(m-bn or i-bn)2]X2 and [Ni(H2O)2(dl-bn)2]X2·n H2O, where m-bn, i-bn, and dl-bn are meso-2,3-butanediamine, 2-methyl-1,2-propanediamine, and dl-2,3-butanediamine, respectively, X is Cl?, Br?, I?, NO?3, or ClO?4, and n is 2 for bromide, and 0 for the others, were investigated in a solid phase before and after heating using thermal analyses (TG and DSC) and spectral and magnetic measurements. In the case of the chloride and bromide, the square planar bis(dl-bn) complexes obtained by dehydration of the respective diaqua complexes were transformed to the octahedral diacido bis(dl-bn) complexes upon further heating. The same structural transformation was observed in the thermal reactions of [Ni(m-bn)2](NO3)2 and [Ni(i-bn)2]Cl2. It was summarily recognized that such square planar-to-octahedral transformation was favored in the order dl-bn > i-bn > m-bn complexes in the respective halides, and it was a reversible thermochromism from yellow to blue. The changes in enthalpy of the reactions were endothermic and fell in the range of about 10–20 kJ mole?1. The possibility of such configurational change seems to be dependent mainly upon the ionic radius of the X anion, the orientation of two C-substituted methyl groups on butanediamines in the formation of the complexes, and the thermal stability of the complexes themselves.  相似文献   

9.
Zn(II) ions sorption onto N‐Benzoyl‐N‐Phenylhydroxylamine (BPHA) impregnated polyurethane foam (PUF) has been studied extensively using radiotracer and batch techniques. Maximum sorption (~98%) of Zn(II) ions (8.9 × 10?6 M) onto sorbent surface is achieved from a buffer of pH 8 solution in 30 minutes using 7.5 mg/mL of BPHA‐impregnated polyurethane foam at 283 K. The sorption data follow Langmuir, Freundlich and Dubinin‐Radushkevich (D‐R) isotherms. The Langmuir constants Q = 18.01 ± 0.38 μ mole g?1 and b = (5.39 ± 0.98) × 103 L mole?1 have been computed. Freundlich constants 1/n = 0.29 ± 0.01 and Cm = 111.22 ± 12.3 μ mole g?1 have been estimated. Sorption capacity 31.42 ± 1.62 μ mole g?1, β = ?0.00269 ± 0.00012 kJ2 mole?2 and energy 13.34 ± 0.03 kJ mole?1 have been evaluated using D‐R isotherm. The variation of sorption with temperature yields ΔH = ?77.7 ± 2.8 k J mole?1, ΔS = ?237.7 ± 9.3 J mole?1 K?1 and ΔG = ?661.8 ± 117.5 k J mol?1 at 298 K reflecting the exothermic and spontaneous nature of sorption. Cations like Fe(III), Ce(III), Al(III), Pb(II) and Hg(II) and anions, i.e., oxalate, EDTA and tartrate, reduce the sorption significantly, while iodide and thiocyanate enhanced the sorption of Zn(II) ions onto BPHA‐impregnated polyurethane foam.  相似文献   

10.
Comparative studies of the kinetics of the isothermal and nonisothermal dehydration and decomposition of manganese(II) oxalate in an atmosphere of nitrogen are reported. Agreement between the values of the energy of activation for the isothermal and the nonisothermal dehydration at high heating rates was obtained. At low heating rate, the value obtained for the energy of activation is comparable with the enthalpy of dehydration. Values of 143 and 242 kJ mole?1 were obtained for the energy of activation of the isothermal and nonisothermal decomposition, respectively. The difference is attributed to the condition of the anhydrous salt used in both cases. The theory of absolute reaction rate is applied and the parameters obtained are discussed.  相似文献   

11.
From the heats of solution for Ba(NO3)2 (c), KNO3 (c; II), and Ba(NO3)2 · 2 KNO3 (c) the heat of combination of the double salt from its component salts ΔH 298 0 =(?2.168±0.028) kcal · mole?1 and the standard heat of formation ΔH f,298 0 =?474.75 kcal · mole?1 have been determined. The values of derived thermodynamic properties are summarized in table 4.  相似文献   

12.
The molar heats of dehydration, Δdehyd., of concentrated sodium chloride and potassium chloride solutions were measured with a differential scanning calorimeter in the scanning and isothermal modes. The overall Δdehyd. was found to be 44.5 and 44.3 kJ mole?1 H2O for NaCl and KCl solutions respectively. There is an astonishing difference between concentrated NaCl and KCl solutions in the way water is lost. The number of fractions of heat dehydration were 2 for NaCl and 3 for KCl. The excess Δdehyd. was about 10 kJ mole?1 H2O for fraction II of NaCl, and 17 and 55 kJ mole?1 H2O for fractions II and III, respectively, of KCl.  相似文献   

13.
《Analytical letters》2012,45(10):993-1003
Abstract

The spectrophotometric study of reddish cyclohexane-1, 3-dione bis (4-methylthiosemicarbazone)-Zn(II) was made in dimethylformamide-water solution (λmax= 475 nm, ∑ = 3.3×104 1.mole?1. cm?1. Sandell sensitivity = 2×10?2 μg Zn(II).cm?2, stoichiometry 1:1, and apparent stability constant 6.1×104). A new method for the spectrophotometric determination of Zn(II) is proposed for concentrations between 0.1 and 2.5 ppm. The relative error (95% confidence level) is 0.7% for 1.0 pprn of Zn(II).

The extraction with ethylacetate of the reddish complex was also studied spectrophotometrically (λmax = 493 nm, ∑ in organic phase = 4.8×104 1.mole?1.cm. Sandell sensitivity = 3.4×10?4 μg Zn(II).cm?2, stoichiometry 1:1, apparent extraction constant 1.4×104). A new method for the extraction-spectrophotometric determination of Zn(II) is proposed for concentrations, in aqueous phase, between 0.02 and 0.30 ppm. The relative error (95% confidence level) is 1.0% for 0.15 pprn of Zn(II).  相似文献   

14.
Co(II), Ni(II) and Cu(II) chloro complexes of benzilic hydrazide (BH) have been synthesized. Also, reaction of the ligand (BH) with several copper(II) salts, including NO3 ?, AcO?, and SO4 ? afforded metal complexes of the general formula [CuLX(H2O) n nH2O, where X is the anion and n = 0, 1 or 2. The newly synthesized complexes were characterized by elemental analysis, mass spectra, molar conductance, UV–vis, IR spectra, magnetic moment, and thermal analysis (TG/DTG). The physico-chemical studies support that the ligand acts as monobasic bidentate towards metal ion through the carbonyl and hydroxyl oxygen atoms. The spectral data revealed that the geometrical structure of the complexes is square planar for Cu (II) complexes and tetrahedral for Co(II) and Ni(II) complexes. Structural parameters of the ligand and its complexes have been calculated. The ligand and its metal complexes are screened for their antimicrobial activity. The catalytic activities of the metal chelates have been studied towards the oxidative decolorization of AB25, IC and AB92 dyes using H2O2. The catalytic activity is strongly dependent on the type of the metal ion and the anion of Cu(II) complexes.  相似文献   

15.
Physico-chemical properties of 4-chloro-2-nitrobenzoates of Co(II), Ni(II), and Cu(II) were studied. The complexes were obtained as mono- and trihydrates with a metal ion to ligand ratio of 1:2. All analysed 4-chloro-2-nitrobenzoates are polycrystalline compounds with colours depending on the central ions: pink for Co(II), green for Ni(II), and blue for Cu(II) complexes. Their thermal decomposition was studied only in the range of 293–523 K, because it was found that on heating in air above 523 K 4-chloro-2-nitrobenzoates decompose explosively. Hydrated complexes lose crystallization water molecules in one step and anhydrous compounds are formed. The final products of their decomposition are the oxides of the respective transition metals. From the results it appears that during dehydration process no transformation of nitro group to nitrite takes place. The solubilities of analysed complexes in water at 293 K are of the order of 10–4–10–2 mol dm–3. The magnetic moment values of Co2+, Ni2+ and Cu2+ ions in 4-chloro-2-nitrobenzoates experimentally determined at 76–303 K change from 3.89 to 4.82 μB for Co(II) complex, from 2.25 to 2.98 μB for Ni(II) 4-chloro-2-nitrobenzoate, and from 0.27 to 1.44 μB for Cu(II) complex. 4-chloro-2-nitrobenzoates of Co(II), and Ni(II) follow the Curie–Weiss law. Complex of Cu(II) forms dimer.  相似文献   

16.
The rates of relaxation of HCl(ν = 1) and DCl(ν = 1) by atomic oxygen have been determined between 196 and 400 K using the laser induced vibrational fluorescence method. The values of the rate constants, κ1,H and κ1,D, can be matched quite well by Arrhenius expressions: κ1,H = 6.2 × 10?12 exp (?1.05 kcal mole?1/RT) cm3 molecule?1 s?1 and κ1,D = 2.9 × 10?12 exp (?0.5 kcal mole?1/RT) cm3 molecule?1 s?1. The most likely explanation of the absolute and relative magnitudes of these rate constants appears to be that relaxation occurs as a result of non-adiabatic vibronic transitions during collisions.  相似文献   

17.
Salicylidene Schiff base chelates (R,R)‐(–)‐N,N′‐bis(3,5‐di‐tert‐butylsalicylidene)‐1,2‐cyclohexanediaminomanganese(III) chloride, (R,R)‐(–)‐N,N′‐bis(3,5‐di‐tert‐butylsalicylidene)‐1,2‐cyclohexanediaminocobalt(II), N,N′‐bis(salicylidene)‐ethylenediaminocobalt(II), N,N′‐bis(salicylidene)ethylenediaminonickel(II), and N,N′‐bis(salicylidene)ethylenediaminoaquacobalt(II), as well as (R,R)‐(–)‐N,N′‐bis(3,5‐di‐tert‐butylsalicylidene)1,2‐cyclohexanediamine, were kinetically examined as antioxidants in the scavenging of tert‐butylperoxyl radical (tert‐butylOO?). Absolute rate constants and corresponding Arrhenius parameters were determined for reactions of tert‐butylOO? with these chelates in the temperature range ?52.5 to ?11°C. High reactivity of tert‐butylOO? with Mn(III) and Co(II) salicylidene Schiff base chelates was established using a kinetic electron paramagnetic resonance method. These salicylidene Schiff base chelates react in a 1:1 stoichiometric fashion with tert‐butylOO? without free radical formation. Ultraviolet–visible spectrophotometry and differential pulse voltammetry established that the rapid removal rate of tert‐butylOO? by these chelates is the result of Mn(III) oxidation to Mn(IV) and Co(II) oxidation to Co(III) by tert‐butylOO?. It is concluded that removal of alkylperoxyl radical by Mn(III) and Co(II) salicylidene Schiff base chelates may partially account for their biological activities. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 431–439, 2007  相似文献   

18.
A solid phase extraction system for separation and preconcentration of trace amounts of Pb(II), Ni(II), Cd(II) and Cu(II) is proposed. The procedure is based on the adsorption of Pb2+, Ni2+, Cd2+ and Cu2+ ions on a column of 1-(2-pyridylazo)-2-naphthol (PAN) immobilised on surfactant-coated clinoptilolite prior to their determinations by Flame Atomic Absorption Spectroscopy (FAAS). The effective parameters including pH, sample volume, sample flow rate and eluent flow rate were also studied. The analytes collected on the column were eluted with 5 mL of 1 mol L?1 nitric acid. A concentration factor of 180 can be achieved by passing 900 mL of sample through the column. The detection limits (3 s) for Cd, Cu, Pb and Ni were found to be 0.28, 0.12, 0.44 and 0.46 µg L?1, respectively. The relative SDs at 10 µg L?1 (n = 10) for analytes were in the range of 1.2–1.4%. The method was applied to the determination of Pb, Ni, Cd and Cu in water samples.  相似文献   

19.
A simultaneous preconcentration procedure for the determination of Cd(II), Ni(II), Co(II) and Cu(II) by atomic absorption spectrometry is described. The method is based on solid phase extraction of the metal ions on dithizone loaded on naphthalene in a mini-column, elution with nitric acid and determination by flame atomic absorption spectrometry. The sorption conditions including NaOH concentration, sample volume and the amount of dithizone were optimized in order to attain the highest sensitivity. The calibration graph was linear in the range of 0.5–75.0 ng ml?1 for Cd(II), 1.0–150.0 ng ml?1 for Ni(II), 1.0–150.0 ng ml?1 for Co(II) and 1.0–125.0 ng ml?1 for Cu(II) in the initial solution. The limit of detection based on 3Sb was 0.13, 0.32, 0.33 and 0.43 ng ml?1 for Cd(II), Ni(II), Co(II) and Cu(II), respectively. The relative standard deviations (R.S.D) for ten replicate measurements of 20 ng ml?1of Cd(II), 100 ng ml?1 of Ni(II), Co(II) and 75 ng ml?1 of Cu(II) were 3.46, 2.43, 2.45 and 3.26%, respectively. The method was applied to the determination of Cd(II), Ni(II), Co(II) and Cu(II) in black tea, tap and river water samples.  相似文献   

20.
Abstract

The thermal decomposition of polydichlorophosphazene has been examined. The decomposition was found to be first-order with an activation energy of 22.5 ± 2 kcal mole?1. The products comprised a wide range of cyclic and linear dichlorophosphazenes. It is suggested that the decomposition reaction is initiated at the ends of the macromolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号