首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Vapour pressures of butyl acetate?+?benzene or toluene or o- or m- or p-xylene were measured by static method at 298.15?±?0.01?K over the entire composition range. The activity coefficients and excess molar Gibb's free energies of mixing (G E) for these binary mixtures were calculated by fitting vapour pressure data to the Redlich–Kister equation using Barker's method of minimizing the residual pressure. The G E values for the binary mixtures containing benzene are positive; while these are negative for toluene, ortho, meta and para xylene system over the whole composition range. The G E values of an equimolar mixture for these systems vary in the order: benzene?>?m-xylene?>?o-xylene?>?p-xylene?>?toluene  相似文献   

2.
The densities, ρ, of binary mixtures of tetrahydrofuran (THF) with benzene, toluene, o-xylene, m-xylene, p-xylene and mesitylene, including those of the pure liquids, were measured over the entire composition range at the temperatures (278.15, 283.15, 288.15, 293.15, 298.15, 303.15, 308.15, 313.15 and 318.15) K and atmospheric pressure. From the experimental data, the excess molar volume, V m E, partial molar volumes, m,1 and m,2 , and excess partial molar volumes, m,1 ∘E and m,2 ∘E, at infinite dilution were calculated. The V m E values were found to be negative over the whole composition range for all of the mixtures and at each temperature studied, except for THF + mesitylene, which exhibits a sigmoid trend wherein V m E changes sign from negative to positive as the concentration of THF in the mixture is increased, indicating the presence of specific interactions between THF and aromatic hydrocarbon molecules. The extent of negative deviations in the V m E values follows the order: benzene > toluene > p-xylene > m-xylene > o-xylene > mesitylene. It is observed that the V m E values depend upon the number and position of the methyl groups in these aromatic hydrocarbons.  相似文献   

3.
The Kirkwood–Buff (K-B) integrals play an important role in characterizing the intermolecular interactions in liquid mixtures. The interaction is represented by the K-B parameters, G AA,G BB, and G AB, which reflect correlation between like-like and like-unlike species in the mixture. The K-B integrals of binary mixtures of tetrahydrofuran with benzene, toluene, o-xylene, m-xylene, p-xylene and mesitylene at 298.15 K and atmospheric pressure have been computed from the experimental data of ultrasonic speed and density. We have used the similar inverse procedure (as proposed by Ben-Naim) to compute the K-B parameters of the mixture, in which thermodynamic information on mixtures, such as partial molar volumes, isothermal compressibility and experimental data of partial vapor pressures were used. A new route has been incorporated by using regular solution theory in the computation of excess Gibbs energy for obtaining the partial vapor pressures of binary liquid mixtures. The low values of excess entropy, S E≈0, obtained for these mixtures indicate the applicability of regular solution theory to the mixtures. The values of the K-B parameter, G AB, obtained using this procedure indicate that the correlation/affinity between THF and aromatic hydrocarbon molecules follows the order: benzene > toluene > o-xylene > m-xylene > p-xylene > mesitylene, which is in good agreement with the results obtained from the trends exhibited by the excess functions of these mixtures.  相似文献   

4.
《Fluid Phase Equilibria》1999,155(2):261-276
The excess isentropic compressibilities, KsE for seven binary mixtures of methyl methacrylate+benzene, +o-xylene, +m-xylene, +p-xylene, +toluene, +ethylbenzene and +cyclohexane were estimated from the measured densities and speeds of sound at 298.15 and 308.15 K. The KsE values were large and positive for MMA+cyclohexane and +m-xylene, while they were negative for other mixtures. A qualitative analysis of KsE values was made in terms of molecular interactions. The speeds of sound of all the mixtures were also predicted from the free length theory (FLT) and collision factor theory (CFT).  相似文献   

5.
《Fluid Phase Equilibria》2005,235(1):42-49
Molar excess volumes and molar excess enthalpies of butyl acetate (i) with cyclohexane or benzene or toluene or o-, m- or p-xylene (j) binary mixtures have been measured dilatometrically and calorimetrically over the entire composition range at 308.15 K. The observed data have also been analyzed in terms of graph theoretical approach. The analysis of VE data by graph theoretical approach suggests that butyl acetate in pure state exists as associated entity and (i + j) mixtures are characterized by the presence of (ij) molecular entity. It has further been observed that VE and HE values calculated by this approach agree well with the corresponding experimental values. The presence of molecular entity is further confirmed by IR study of (i + j) mixture.  相似文献   

6.
Molar excess volumes Ve and molar excess enthalpies He of binary methylenebromide (i) +benzene. +toluene, and + o?, + m? and + p-xylene (j) mixtures have been determined at 298.15 and 308.15 K. The data have been analysed in terms of recent approaches for solutions of nonelectrolytes, and the results suggest that these mixtures are characterised by specific interactions between the components. Self-volume interaction coefficients ViiVjj have also been evaluated.  相似文献   

7.
The densities ρ, dynamic viscosities η, speeds of sound u, and relative permittivities εr, for (dibutyl ether + benzene, or toluene, or p-xylene) have been measured at different temperatures over the whole composition range and at atmospheric pressure. The mixture viscosities have been correlated with semi empirical equations. Calculations of the speed of sound based on Nomoto’s equation have been found to be close to experimental values for the three mixtures and at two temperatures. Excess functions such as excess molar volumes VmE, excess isentropic compressibilities κsE, deviations in relative permittivities δεr, and molar polarizations δPm were calculated and fitted to Redlich–Kister type equations.  相似文献   

8.
The densities (ρ), ultrasonic speeds (ν), and refractive indices (n) of binary mixtures of styrene (STY) with m-, o-, or p-xylene, including those of their pure liquids, were measured over the entire composition range at the temperatures 298.15, 303.15, 308.15, and 313.15 K. The excess volumes (VE), deviations in isentropic compressibilities (Δks), acoustic impedances (ΔZ), and refractive indices (Δn) were calculated from the experimental data. Partial molar volumes (V0?,2) and partial molar isentropic compressibilities (K0?,2) of xylenes in styrene have also been calculated. The derived functions, namely, VE, Δks, ΔZ, Δn, V0?,2, and K0?,2 were used to have a better understanding of the intermolecular interactions occurring between the component molecules of the present liquid mixtures. The variations of these parameters suggest that the interactions between styrene and o-, m-, or p-xylene molecules follow the sequences: p-xylene>o-xylene>m-xylene. Apart from using density data for the calculation of VE, excess molar volumes were also estimated using refractive index data. Furthermore, several refractive index mixing rules have been used to estimate the refractive indices of the studied liquid mixtures theoretically. Overall, the computed and measured data were interpreted in terms of interactions between the mixing components.  相似文献   

9.
Molar excess volumes, VE, for pyridine (A) + α-picoline (B), + β-picoline (B) and + γ-picoline (B) and benzene (A) + toluene (B), + o-xylene (B) and + p-xylene (B) and carbon tetrachloride (A) + n-heptane (B) have been measured dilatometrically as a function of temperature and composition and have been utilized to study B—B and B—B—B interactions in the presence of A via the Mayer—McMillan approach. A model has also been presented to account for these B—B and B—B—B interactions. The VE data at 308.15 K have also been analysed in terms of the “graph theoretical” approach which describes the VE data well for all these mixtures at 308.15 K. The “graph theoretical” approach has further been extended to successfully evaluate VE data for a mixture at any temperature, T2, when the VE data at T1 are known.  相似文献   

10.
Surface tensions of mixtures of 1,2-dibromoethane+cyclohexane, benzene, +toluene, +o-xylene, +m-xylene, and +p-xylene have been measured as a function of composition at 298.15, 303.15 and 308.15 K. Interchange energies and surface heats of mixing in these mixtures were computed.  相似文献   

11.
Vapor–liquid equilibria (VLE) data of 2-butanol?+?benzene or toluene or o- or m- or p-xylene measured by static method at 308.15?±?0.01?K over the entire composition range are reported. The excess molar Gibbs free energies of mixing (G E) for these binary systems have been calculated from total vapor pressure data using Barker's method. The G E for these binary systems are also analyzed in terms of the Mecke–Kempter type of association model with a Flory contribution term using two interaction parameters and it has been found that this model describes well the G E values of binary systems benzene or toluene.  相似文献   

12.
Excess volumes VE for trichloroethene (CCl2CHCl) + benzene, + toluene, + p-xylene, + tetrachloromethane, and + trichloromethane have been measured at 303.15 K, by direct dilatometry. VE has been found to be positive for trichloroethene + benzene, and + trichloromethane, and negative for trichloroethene + toluene, and + p-xylene. For trichloroethene + tetrachloromethane VE is positive at low mole fractions of C2HCl3 and negative at high mole fractions.  相似文献   

13.
Densities of the binary mixtures of diethylcarbonate with benzene and substituted benzenes, namely toluene, bromobenzene, chlorobenzene and nitrobenzene have been measured as a function of the composition, at 293.15 K and atmospheric pressure using a bicapillary pycnometer with an accuracy of 4 parts in 104.The calculated excess molar volumes, V E were correlated with Redlich-Kister equation. The excess molar volumes are negative over the entire range of composition for the systems diethylcarbonate with benzene, toluene, bromobenzene and nitrobenzene. An inversion of the sign of V E is observed over some concentration for mixtures of diethylcarbonate with chlorobenzene. Partial molar volumes, Vi are also evaluated and their values have been extrapolated to zero concentration to obtain the limiting value at infinite dilution, Vo i . The numerical values of the excess molar volumes for binary mixtures decrease in the order: chlorobenzene > benzene > bromobenzene ≈ toluene > nitrobenzene. The results are explained in terms of dissociation of the self-associated solute molecules and the formation of aggregates between unlike molecules.  相似文献   

14.
In this study, the monocomponent adsorption of benzene, toluene and o-xylene (BTX) compounds, as model contaminants present in the petrochemical wastewaters, was investigated using three types of adsorbents: activated carbon (Carbon CD 500), a polymeric resin (MN-202) and a modified clay (Claytone-40). Langmuir and Freundlich models were able to fit well the equilibrium experimental data. The BTX adsorption capacity increased in the following order: Claytone-40 < CD 500 < MN-202. The maximum uptake capacity of MN-202, given by the Langmuir fitting parameter, for benzene, toluene and o-xylene was 0.8 ± 0.1, 0.70 ± 0.08 and 0.63 ± 0.06 mmol/g at 26 °C. Desorption kinetics for polymeric resin with 50 % methanol solution were fast being able to reuse the resin in consecutive adsorption/desorption cycles without loss of sorption capacity. The adsorptive behaviour at batch system was modelled using a mass transfer kinetic model, considering that the sorption rate is controlled by a linear driving force model, which successfully predicts benzene, toluene and o-xylene concentration profiles, with homogeneous diffusivity coefficients, D h , between 3.8 × 10?10 and 3.6 × 10?9 cm2/s. In general, benzene diffuses faster than toluene and o-xylene, which is in agreement with molecular diffusivity in water.  相似文献   

15.
The viscosities of the mixtures of 1,2-dibromoethane + cyclohexane, + benzene, +toluene, +o-xylene, +m-xylene, and +p-xylene have been measured at 298.15 and 308.15 K as a function of composition. The viscosity data have been analysed in the light of approaches developed by Hind and Grunberg . Using Eyring kine- matic scheme the viscosity data have been employed to calculate activation energies of flow.  相似文献   

16.
Molar excess volumes VEijk of methylenebromide i + pyridine j + β-picoline (k, cyclohexane (i) + pyridine (j) + β-picoline(K), benzene(i)+toluene(j)+1,2-dichloroethane(k), benzene(i) + 0-xylene(j) + 1,2-dichloroethane(k) and benzene(i) + p-xylene(j) + 1,2-dichloroethane(k) mixtures have been determined dilatometrically at 298.15 K. The data have been examined in terms of Sanchez and Lacombe theory and the graph-theoretical approach, and it is found that they are described well by the latter. Self- and cross-volume interaction coefficients Vjk, Vjjk and Vjkk, etc., have also been evaluated and the values utilised to study molecular interactions between the jth and kth molecular species in the presence of the ith in these i + j + k mixtures.  相似文献   

17.
Abstract

The gas chromatographic method proposed by us for simple and accurate measurement of isothermal phase equilibria has been applied to the binary mixtures formed by alkylbenzenes amongst themselves. Results on the binary mixtures of: benzene - toluene, toluene + o-xylene, toluene + p-xylene, toluene + ethylbenzene, ethylbenzene + o-xylene and ethylbenzene + p-xylene are presented in this paper. The present measurements on benzene + toluene system at 40°C are in good agreement with the isothermal phase equilibrium data available in the literature.  相似文献   

18.
Viscosity η, and density ρ, of binary liquid mixtures of vinyl acetate or benzyl acetate with o-xylene, m-xylene, p-xylene and ethyl benzene have been determined at (303.15 and 313.15) K for the entire composition range. From the experimental values excess molar volume and deviations in viscosity have been calculated. These excess quantities were fitted to the Redlich-Kister polynomial equation. The viscosity data have been correlated using the Grunberg-Nissan, Tamura and Kurata, Auslander, and Jouyban-Acree models.  相似文献   

19.
The densities of (o-xylene, or m-xylene, or p-xylene + dimethyl sulfoxide) were measured at temperatures (293.15, 303.15, 313.15, 323.15, 333.15, 343.15, 353.15) K and atmospheric pressure by means of a vibrating-tube densimeter. The excess molar volume VmE calculated from the density data provide the temperature dependence of VmE in the temperature range of (293.15 to 353.15) K. The VmE results were correlated using the fourth-order Redlich–Kister equation, with the maximum likelihood principle being applied for the determination of the adjustable parameters. Also we have calculated partial molar volume and excess partial molar volumes of two components. It was found that the VmE in the systems studied increase with rising temperature.  相似文献   

20.
A piece of copper wire coated with a polypropylene hollow fiber membrane was used as an SPME fiber and its efficiency for extraction of BTEX compounds from the headspace of water samples prior to GC analysis was evaluated. Under optimum extraction conditions, limits of detection for benzene, toluene, ethylbenzene, m-p-xylene, and o-xylene were found to be 0.11, 0.22, 0.26, 0.37, and 0.26 μg L?1, respectively. Low detection limits, wide linear dynamic ranges, good reproducibility (RSD% <4), high fiber capacity and higher mechanical durability are some of the most important advantages of the new fiber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号